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[Text] A study is made of the problems of stabilizing spacecraft in the
active segments of the flight from the point of view of some new methods of
motion control theory.

A new approach to investigating the dynamic characteristics of a space
vehicle as an object of control is discussed which is a development of the
controllability and observability theory of Kalman as applied to the given
class of objects.

The study is made of various problems in the analysis of the spacecraft
dyanmics encountered in various planning and design stages.

The book is intended for engineering and technical workers involved in
designing rockets and other flight vehicles.
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- FOREWORD

In this paper a discussion is presented of the methods of investigating the
stabilizability of linear dynamic systems including an oscillating controlled
target and controls : of given structure as applied to the problems of
controlling a spacecraft with a liquid-propulsion rocket engine.

It is known that liquid-propellant rockets are very difficult subjects for
stabilization because of the unfavorable dynamic characteristicg arising
from the mobility of the fuel in the tanks, the elasticity of structure and
also the nonsteady-state nature of the characteristics of the vehicle and

the environment. Therefore in spite of using the latest methods of
synthesizing control systems for such objects, frequently the optimal quality
indexes which could be achieved are not achieved.

At the same time, in the design phase of the space vehicle as an object of
control in practice there are always unused possibilities for selecting the
structure and elements of the composite system basically determining its
dynamic characteristics in the process of controlled movement.

The problem of how these possibilities één be used is the starting point for
the studies, the results of which are discussed in this paper.

Of course, it would be desirable to solve the problem of optimizing the
dynamic characteristics of a cpace vehicle in the most general form, consider-
- ing the closed target-controller system as a whole, also taking into account
the ballistic, strength and other requirements. For many reasons, primarily
as a result of the "crrsa of size," as R. Bellrman puts it, this is in
practice impossible and against our wills it is necessary to limit ourselves
to more modest goals.

Let us note that in the liquid-propulsion rocket design developments the
situation 1s typical where the structure of the controls is rigidly given
for one reason or another. For example, a spacecraft for a different pur-
pose designed on the basis of some basic version can have the same auto-
matic stabilization system with respect to structure with, perhaps, only
the values of the parameters altered.
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In such situations, when the structure of the controls is defined, it is
natural to ask the following question: how are the structural parameters
of the object of control selected so that it will have the best character—
istics with respect to the controls of the given structure? To solve this
problem it 1s desirable to have an optimalness criterion which does not
depend on the specific parameters of the controls determined only by the
structure of the controls and the characteristic parameters of the object.
Formally, it is possible to construct such a criterion only after proving
the theoretical possibility of separating the regions of stability and space
of the parameters of the object and the ccentrols (under assumptions that
are reasonable for the investigated class of systems).

So far as the author knows, this was done for the first time in the papers
by B. I. Rabinovich [57], I. M. Sidorov, I. P. Korotayeva [67] for controlled
oscillatory systems with a controller which slightly disturbs the natural
frequencies of the auxiliary oscillators.

There were other prerequisites for studying the problem of optimizing the
dynamic properties of the object of control from general points of view.
The fact is that in general control theory as a result of the work of

R. Kalman and other researchers, there is a tendency at the present time to
separate the investigation of the problems pertaining to the controlled
system itself as the object of control into a separate region (the problems
of controllability, observability [27], invariance [64], directivity [511,
and so on).

Although the structure of the control system itself is completely ignored
here, the corresponding criteria provide valuable information about the
behavior of the object of control in the control process.

- The methods discussed in this paper occupy an intermediate position between
the corresponding methods of controllability (observability) theory and the
classical theory of stability. The structure of the control system here is
significant in contrast to the Kalman theory; at the same time the specific
values of the parameters of the control system do not enter into various
criterial relations, and the results of the investigations are formulated
in terms of the regions in space of the parameters of the object of control
itself.

In order to emphasize this fact, and also considering that the concept of

stability is too overworked, in this book, following the lead of reference
[56], we shall call the criteria characterizing the object of control the

stabilizability criteria.

The idea of the proposed approach consists in the following. Some formal
analog -~ a quadratic form with coefficients which depend on the parameters
of the object of control is placed in correspondence to this object. The
positive (or negative) definability of this form is identified with the
concept of perfection of the object (for example, the space vehicle) in the
dynamic sense.
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Testing the Sylvester conditions for the mentioned quadratic form and

the construction of the corresponding regions in the space of the parameters
of the object of control make up the content of the methods of investigating
the stabilizability of controlled oscillatory systems.

If the terminology adopted in space vehicle dynamics is used, the discussed

- theory is the theory of 'phase” stabilization of oscillatory systems. In
practice when "phase" stabilization of the space vehicle is impossible,
usually the problems of "amplitude" stabilization are investigated which
are essentially the classical problems of the analysis of the stability of
moving objects.

The methods of investigating stabilizability are to some degree analogous

to the above-mentioned methods of investigating controllability, observa-
bility and so on in gemeral control theory: both permit the general analysis
of the properties of the object of control as the first step in solving the
classical problems of stability of motion or various problems of optimal
control.

Chapter 2 of this book contains a discussion of stabilizability theory.

Chapter 1 is an auxiliary chapter. The simplest model including two
connected oscillators is used to investigate some of the problems
characteristic of the modern theory of linear controlled systems (the prob-

- lems of dynamic instability, controllability, observability, modal comtrol
in various situations, and so on).

Chapters 3 and 4 are of an applied nature. In these chapters a study is
made of the problems of the stabilizability of various models of space

vehicles and also adjacent problems pertaining to the design of optimal
(in the dynamic sense) objects. )

The mathematical models of :space vehicles are used to the degree of complete-
ness which corresponds to the level of the initial design phases of objects
of this type: as a rule the equaiions are assumed to be linear, the
coefficients are considered constant ("frozen" for some characteristic point
in time T of the activ~ segment).

The oscillatory nature ¢ the object of control in the given case comes
from the presence of moving fuel components used to operate the sustainer
- engines and also elasticity of the hull and other structural elements.

Automatic stabilization systems (in the transverse oscillation mode) are
used as the control systems here, and in the case of longitudinal oscilla-
- tions, the engine is used directly. The performed studies of specific
composite systems of space vehicles and the standard conditions of space
vehicle movement provide a basis for considering that the discussed methods
are a quite effective tool for investigating the dynamic properties of
flight vehicles with liquid-propulsion rocket engines under the conditions
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of incompleteness of a priori information about the stabilization system.
It is appropriate to emphasize here that the effectiveness of the methods
of investigating the stabilizability is especilally noticeable when they are
used in combination with the classical methods of analysis, preceding them
in the general process of investigating the stability of the investigatcd
class of objects. Therefore, a discussion is presented below (see Chapter 5)
of a number of the traditional methods of analyzing the stability of the

R closed system made up of the space vehicle and its control system, and the
problems of amplitude stabilization are investigated. The author gives
special attention here to the interpretation of the regions of stabilizabil-
ity of space vehicles when investigating the stability of the control pro-
cesses in the active segment.

On the whole, in this book the author would like to attract the attention
of the readers to the new possibilities which are offered by successive
(physical) analysis of such characteristics as controllability, observabil-
ity, stabilizability, and so on as applied to dynamic systems of a large
number of oscillatory degrees of freedom and with limited possibilities of
modal control.

If we are talking about the general problem of stability, which in no way
replaces the classical methods, this approach helps us to find the primary
causes of instability and either to eliminate them or determine the direction
of further research.

In conclusion, the author expresses his deep appreciation to doctor of
technical sciences, Prof B. I. Rabinovich for valuable suggestions made

when reviewing the manuscript of the book and also engineer Yu. V. Shchetinin
for his assistance in preparing the manuscript for publication.

It is requested that all critical comments and suggestions be sent to the
- following address: Moscow, GSP-6, 1~y Basmannyy per., d.3, izd-vo
"Mashinostroyeniye."
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CHAPTER 1. SIMPLEST NONCONSERVATIVE OSCILLATORY SYSTEMS

1.1. Examples from Mechanics. Autonomous Systems with Two Degrees of
Freedom

Aircraft Wing Flutter

Flutter is the classical example of a phenomenon which cannot be explained
by investigating the system with only one degree of freedom. This form of
instability is characterized by intensive interaction of at least two
oscillatory elements under the effect of external nonmpotential forces.
The names given to the various forms of flutter illustrate this fact:

Bending-aileron wing flutter (bending vibrations of the wing combined with
aileron vibrations);

Bending-rudder flutter of the horizontal empennage (bending vibrations of
the fuselage in the vertical plame jointly with vibrations of the elevator
around the axis of suspension);

Torsional-rudder flutter of the horizontal empennage (torsional vibrations
of the fuselage combined with vibrations of the elevator and tail assembly),
and so0 on.

This is how this phenomenon azppears to observers from the outside [30]:
"While testing an expevimental aircraft, a twin-engine monoplane, the wings
began to vibrate unexp:-tedly. This occurred while the aircraft was flying
a measured base line it maximum speed near the ground. The wing vibrations
began abruptly and were of an antisymmetric nature, that is, if the right
half of the wing went up, the left half went down at the same time. Power-
ful vibrations of the ailerons occurred at the same time, so that the
controls were jerked out of the pilot's hands. In the given case the
pilot made the right decision: he throttled down and in spite of the fact
that the controls had been jerked out of his hands, he suceeded in signif-
icantly taking up the elevator. As a result, the speed began to drop
sharply, and when it had decreased by about 20%, the vibrationsstopped
almost as abruptly as they had begun. Five to eight seconds passed between
the beginning and end of the vibrations. After the vibrations stopped,

the aircraft behaved normally, and after 5 minutes of flight the pilot
made a good landing at “he airport.

6
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Figure 1.1. Force diagram on an inclined plate

"Examination of the aircraft revealed that at some points in the structure
of the center wing section rupture of the skin and cowlings had started
- (cracks had formed), and some of the rivets holding the skin to the longerons,
stringers and ribs had sheared off. Residual deformations in the form of
waves in the skin had appeared on the surface of the center wing section
between the engines and the fuselage. Clay was detected in the suspension
of the ailerons and the aileron servotabs.
"However, flutter does not always end so favorably., Cases are known where
vibrations that began in flight have led to complete disintegration of the
. aircraft in one or two seconds or less., It appears to observers of such
an accident from the ground &s if the part of the aircraft where the
vibrations started has exploded."

Thus, observations indicate that under defined flight conditions vibrations
of the fuselage and control surfaces which are extraordinarily intense can
occur under defined flight conditions.

The complete theory of flutter is highly complex..[9, 25, 76]. Here, only
a suitable mechanical model [50] which can be used to explain the primary
aspects of the nature of this phenomenon which once was a threatening
obstacle on the path of increasing the speed of aircraft, will be
investigated. .

- - Let the plate depicted in Fig 1.1 have two degrees of freedom. We shall
characterize its position by two coordinates -- the angle of rotation ¢
and vertical displacement y of the center of the plate.

Horizontal displacements will be considered impossible.

Let us write the equations defining ¢ and y as a function of time:
= $=¢(t); y=y ().
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The tensions of the two springs c; and ¢p will be assumed to be different,
and the mass of the plate, uniformly distributed over its entire surface.
Let us denote by m the mass corresponding to a unit area of the central
plane of the plate. .

Puring its movement, the plate is acted on by the list

q_cﬁ g_V_?_ ble,
da 2

running at a distance a from the left edge of the plate and also the
: force of reaction of the elastic supports proportional to the displacements
of the long sides of the plate: '

4; Rl=_(y+'%"?)c1l§ R2==—(£I——g< q:)c;l.

Reducing these reactions to the center of gravity of the plate, we obtain
the force

R=R1+Rz=—(cx+cz)ly"";— (ey—c9) Ly

and the moment

M=@+%¢%J%+@—%w?#€=

- Now let us select the equations of motion of the plate. .One of them
describes the center of the gravity of the plate:

Y +R=mbl 2% (1.1

where mbl is the mass of the entire plate and the other, the rotations of
the plate around the horizontal axis z passing through the ceater of mass:

L —mbl d 1.2
y(2 a)+M 2 a4’ (-2

Substituting the expressions for Y, R and M in equations (1.1) and (1.2),
we obtain the following system of differential equations:

&2 . .
—d%—’rauy—‘.-ﬂm?=0: . (1.3)

d2p .
— a a; =0,
R ny a2
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where
ayy = ‘1 fCQ M an =3(C[+02)__ﬂ f. é:_‘{!};
mb mb da 2 mb?
cp—ey 4y w2 | 6 (] — ¢q)
Ap==——=2 e g — — ; gm0 4
u 2m du 2 m'’ b mb? (1.4)

When solving the problems of aeroelasticity, to which the discussed topic
belongs, first the conditions are defined to which the static form of the
stability loss, the so-called divergence, is possible.

For this purpose it is proposed that y and ¢ are constants. Then the
second derivatives vanish and the equations assume the form

any+ap=0, ayy+ ayp=0. (1.5)

z The condition of nonzero solutions of system (1.5) has the form.

Q1o — @2y =0,
Substituting the expressions (1.4) for the coefficients, the following

- formula is obtained, which defines the critical divergence rate:

)=2 —a (1.6)

Key: 1. critical

: —— YA
- —_ —— :
— — —-
. G } - G —r _,.
_,_i /7;... % ’;_.
777, 777 o - /777 777
2 b £

Figure 1.2. Types of movements of the plate after initial
deflection:

the axis of rigidity is demoted by the x, the center of mass

of the plate 1s in the middle of the span.
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Divergence as a static form of loss of stability is possible obviously when
c1<€y. Limiting ourselves by this remark, let us proceed to the investiga-
tion of other possible solutions of systems (1.3) as an oscillatory system.

We shall find the solution to y(t), ¢(t) in the form
y(1)=Ae"", ¢ (t)=Be", : (1.7)

in other words, we propose that both coordinates vary acéording to the same
law and they are always proportional to each other.

It is easy to see that the desired system is satisfied by values of both
w and (-w). Therefore for the coordinates y, ¢ the solution will be
found in the form, respectively

. y=Ae"" + A", (1.8)
¢=Be" + Be™", (1. 8b)

Three cases can be represented:

1) w is the real number, for example w=6. Then, using the Euler formula
elb=cos 6+1i sin 6, we find

y=A, (cos 8¢ +i sin 8) - Ay (cos 0 — i sin 0F)= A, cos 0¢ + A, sin 0,

vhere A=A+ Ay 22==:ﬁ;;§1 are the new constants.
!

The expressions (1.8, a), (1.8, b) are harmonic movement (Fig 1.2, c).
In this case the state of equilibrium obviously is stable.
2) w is a complex number, for example w=1iB. Then

y= Ae—a' + A-)ew.

- This solution (see the second teri) is unlimited and increases monotoniaeally.
In this case the state of equilibrium must be recognized as unstable
(Fig 1.2, b).

3) Let w be a complex 1 .imber, for example, w=o+iB. Then the solution is
the function

, y=Alelu[e—-ﬁl+ Aze—-iuleﬂl.

Whatever the number B, positive or negative, the soluticn of y(t), and
¢(t) together with it, will increase without limit. The factors

eiwt, e-iwt indicate oscillations éf'increasing amplitude. This condition
is flutter.,

10
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From the point of view of applied problems, of course, the nature of the
B buildup of the amplitudes y(t) and ¢(t) 1s of interest, especially at the
beginning of the process. This problem, however, will be considered some-
what later, and for the time being we shall return to the system (1.3).

Substituting expressions (1.7) for y(t) and ¢(t) in it, we find
A(—w?tay)+ Bay=0, Aay+-B(—w?+ay)=0.

The determinate of this system must equal zero as a condition of existence
of the nonzero values of A and B:

w?-b-ay ayp
an —wltag '
that is, ot — w2= (@y; + @)+ (31132 — B1225)) =0.

Hence, we find

2__a11+ay an+ayp\2
- =Tt I/( 5 ) T @uldn—anay).

.The condition of reality of w2 acquires the form

0 \2
Ayl — a1y < (ﬂ%) ) (1.9)

and the condition of positiveness of w?:
aan—a8y < 0. (1.10)

Thus, for stability of the investigated mechanical system it is necessary
that

0<apay-—-apa, [(ay +ay)2)®

It is obvious that the boundaries of this interval correspond to the criti-
cal states .

@1y — @10y ==0; | (‘gl. 11)

2p1yy— @190y = LL -; n )2- (1.12)

11
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The first equality was investigated above as the condition of divergence,
and it led te the formula (1.6). In this case the frequencies

wi=ay 4 =0

The second equality also determines the instability as the constant
deviation of the system (static instability). Actually, for the smallest
violation of the condition (1.10), one of the values of w? will be obtained
with a mirus sign. This corresponds to aperiodic motion illustrated in

- Fig 1.2, b. Divergence is possible under the condition cj<c3. For cj>cy
the condition is always satisfied and it remains only to analyze the
equality (1.12). Substituting the expressions for the coefficients (1.4)
in it, we find the critical velocity

—_ RS _ I (ali — ag)?

da
Key: 1. critical

With the sliihtest increase in the velocity v above the critical value
Veriticals w“ becomes a complex number, and the movement of the plate
acquires the nature depicted in Fig 1.2, b. Thus, formula (1.13)
determines the speed of onset of flutter.

The presented.arguments explain (at least qualitatively) the picture of
flutter described in the beginning of this section. Obviously, at some
point the speed of the aircraft was close to critical and by changing the
flight conditions the pilot was able to reduce it before the vibrations
completely destroyed the aircraft. ‘

Returning to formula (1.13), we note that for Veritical the corresponding

frequencies of the system w]l™, W) coincide and numerically become equal
- to wf=“%==ifu;tﬁgl. This fact also serves as a necessary condition

2
of the occurrence ot ciassical flurter.

Let us proceed to othe~ examples indicating the possibility of the
analogous effect also ur.ler other conditions.

Double Pendulum Loaded Under a Following Load

Let us consider the model shown in Fig 1.3 [82]. Let % bha the length of
the rigid element; my, m2 be concentrated masses at distances aj, ap,
respectively, from the ends of the rods; c be the rigidity of the elastic
hinges; P be the ivacking force.

The Lagrange equations will be taken in the form

A0 O _ v s
- dt aél 091—071 +Q (l—‘l’ 2)1 (l. 14)
12
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where T, v are the kinetic and potential energies respectively; Q are

the nonpotential generalized forces.

Assuming the usual simplifications arising from smallness of the oscilla-
tions, we find for the given case

T= % [myal 6+ my (16, 4+ anh,);

v=—[+o—0)- L@+ (L19)
Qi=Q,== — P18,

Figure 1.3. Model of a double pendulum under the effect of
a following load (my=m))

The differential equations of motion (1.14) assume the following form
as a result of substitution of expressions (1.15)

(@ mol) 8, + mofagf,+ (2 — P1) b, — (c —
— Pl)6,=0; myla®+ myall, — cb, +c,0,=".
(1.16)

Finding the solution of (1.16) in the form 61=AePt, 92=BePt, we obtain
with respect to p the characteristic equation

a0 +ap?+a,=0 (1.17)

with the coefficients

2 9,
- Qp=mmya:ay;

= [mla§+ mzag'[‘ my (I ‘12)2] € —may (I+ay) Pl
a;=c2 ’

13
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Since ab>0, there is no static instability of the type of the above-
investigated divergence here.

Let us investigated equation (1.17). For simplification let us set

m [
my=my=—- 7 4 =0= P

then ' ao=€l4‘ mas; a,=—;~ mlz'(llc—3Pl):_ a,=0,

and the discriminant of the characteristic equation

A=a}—daga,= -63—4 mal4 (39¢2 — 22 PL+ 3P12).
The condition of instability, just as in the preceding problem, has the
form A<O or

3PY2— 22cP1+439¢2 < 0, (1.18)

which imposes defined conditions on the magnitude of the following load P.

Solving the inequality (1.18), we find

4 13 '
3 <Pl £ (1.19)

- This situation is illustrated by Fig 1.4. For P<3c/% the roots Pi 2
are negative, and the pendulum is stable as a result. In the ’
interval (1.19) ‘the roots will be complexly conjugate, and for

P>(1_3)% the discriminant A is positive, but the coefficient a2 is negative.
Hence, it follows that the roots Pi’-_ , are positive. In both cases the

pendulum is unstable. Thus, the ccitical value of the load is the value

, Py=3--. (1.20)
Key: 1. critical '

Figure 1.4. The functions A(P) and ay(P) determining the
stability of a double pendulum
14
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For P>3c/% the pendulum, being disturbed, begins to undergo oscillations
analogous to the oscillations in the flutter problem (see Fig 1.2, b).
For P=P_.,.4t{cal the natural values of the system -- as solutions of the
characteristic equation (1.10) -- coincide and for the glven case assume
the form

22 1 p —3Pl).
wj=0p=— = ml (1lc' (Y))

Key: 1. critical
' Electric Circuit with Oscillator

Let us consider the circuit depicted in Fig 1.5-which is made up of two
circuits (Ljecy), (Lycy) connected by a high capacitance ¢ [65]. As the
generalized coordinates.let us take qj(t), qg(t) -- the charges on the
capacitors cj and cy respectively.

The equations of the electromagnetic oscillations in the circuit are
obtained fror. the Lagrange equations (1.14), where

L}, Ly}
- _ T=—~+——  is the magnetic enmergy of the
svstem and )
2 2
U=%+;—2+ﬂq‘2 is the electrostatic energy of the system. After
. ¢ 4 c

performing the required operations we obtain
. d2q; 1 1 1
L (g ) — —=0:
! de2 (01 ¢ )ql ] 72 0'

digy (1 | 1 1 | (1.21)
Lz dtz"l‘(cz-f'T)q"—qu—o.

‘

. These two equations describe the variation in time of the charges q1 and
q2 on the plates of the capacitors cj and ¢y at the given time. It is
obvious that these equations are a strict analogy of the equations which
describe the movement of two harmonic oscillators joined to each other by
a spring.

15
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Figure 1.5. Connected electric circuits (the auxil:l_.ai:y circuit
simulating the following load is depicted by the dotted line)

Let us introduce an oscillator into the circuit which does not have
internal resistance. It is possible to measure the potential difference
on the terminals, for example, of the capacitor c2 and use it for adjust-
- ment of E by installing amplifier tubes so that E will be proportional to
this voltage: S .
E=>‘qz(—]—+—l-) ,
c2

4

or for simplification of notation:
E=8=21
c

Now the system of equations which describes the oscillations in the
circuit assumes the following form:

- TN ML I DU .

. Ll'dt2+(cl+c)q —:=0; (1.22)
LI (RS 0 D B
LB+ (5 +T) = a=0.

The characteristic equation of system (1.22) has the form

' 1 1 143
2Lt —)——"F
!Ll/) v (c‘+ c) ¢

| -1 () =

or

L|L2P4+[L1 ("1;’+—1—)+L2 (—::+ —l-)] P+

¢
a1 W\ Y4B 0. 1.23)
’ | et _‘
16
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The discriminant of the equation (1.23)

D=V(i+%ﬁ¢4i+%f+ﬂ%ﬂua=q(L%

becomes negative if B<B..iticals
where : . . :
2 L ! 1 1\12
pe—are V— L L _ __L—
ﬁai) 1 .-,L,LQ[ 1(02 F r) Lz(cl ‘ c)] (1.25)
Key: 1. critical

From expressions (1.24) and (1.25) it follows that if the parameter 8
- is positive and larger than one, the natural frequencies of the system

sl
5V b (Gt (o) L

(4] [4

move apart still more with respect to their values for B=0.

If the parameter B is negative, the asymmetric relation in equation (1.22)
creates an effect trying to bring the natural frequencies together.

For B=B,y the frequencies ..
(02=(u2=—I—[L (—1 i) L (L _l)]
== b +— )+ L o +

merge, and with a further decrease in B, instability of the same nature
as in the above-investigated examples occurs.

Thus, as is obvious from what has been discussed, in all cases where

an asymmetric relation is added to a symmetric (or Lagrangian) relation
vhich is realized as a result of the presence of quadratic terms in

the expressions for the kinetic (magnetic) and potential (electrostatic)
energy, new, different effects are possible. The nature of the instability
which can arise accordingly differs from the known effect of '"negative'
friction or resonance (under the effect of an.external periodic force).

The principal necessary attribute of this from of instability is approach
of the natural frequencies of the system to merging of them.

17
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How this influences the properties of the system as an object of control
and what the role of such factors as dissipative forces is will be
investigated below.

1.2, Oscillations of Unstable Systems
Terminological Remarks

The above-investigated systems obviously were not comservative. However,
the definition of an "unconservative system" is in need of more precise
statement, considering that there are different points of view in this
regard. For example, this is how "unconservativeness' is interpreted in
the book by T. Karman and M. Biot [29]: "The term 'unconservative'
strictly speaking refers to the case of so-called dissipative systems in
which the mechanical or electrical energy is converted to thermal energy.
In certain other cases the unconservative nature of the forces is caused
to a known degree by the method of investigation. For example, the system
made up of the air foil and flap is an unconservative system in the sense
- that it can absorb energy or give it to the environment ~- the air. The
entire system, including the air, the wing and the flap, if we neglect .
viscosity, is a conservative system. Thus, the conservative or unconserva-
tive nature of the system depends on how our mechanical system is isolated."

It is known that a system is called conservative if: 1) the system is

scleronomic; 2) all the forces are potential forces; 3) the potemtial
energy U does not explicitly depend om time.

- (4) '
(2) (5) 1 (6)

| Peanyuu ] Hecmayuonaprse Cmaguonapuere
(1) ,_% £l gint) Flon )
|

ﬁ?nﬁ?l

wasur Auccu- (V)N ' (&)

padom. namubisre Jabucawue on eng- He sabucauyue
a e div< 0 poeme Figh gx) om cropocnIL i)

) 3 - [# 2l -
anganes| e dives || | it
9 (10) dvgy | [ty
an a2
Figure 1.6. Classification of reéttions and loads
Key: ‘
1. Not completing work dW=0 7. Depending on velocity F(qy, dy)
2. Reactions 8. Not depending on velocity F(qy)
3. Dissipative dW<0 9. Gyroscopic dw=0
4, Loads 10. Dissipative dW<0
5, Nomstationary F(qg, 4y, t) 11. Noncirculating dW=dV
6. Stationary F(qy, &) 12. Circulating dwidV
18
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For a conservative system the work performed by external forces depends
only its initial and final position. For conservative systems there is
an energy integral dE/dt=0 (the total energy of the system does not change
during its movement).

As for systems combined under the term of "nonconmservative," in this paper
the classification of T. Ziegler [82] will be adopted. The corresponding
table is presented in Fig 1.6 where qi, &, are the generalized coordinates
and velocities of the system; dW is the elementary work of the force F in
the segment of actual displacement dqy; U(qy) is the potential.

Let us call the system unconservative if it contains at least one uncon-
servative force, that is, a load of the dissipative (F=F({§y), dW<0) or
circulating (F=F(qk), dW#-dU) type. (Nonstationary loads are not considered
in this paper.)

In the examples of Sectlion 1 the dissipative forces were absent. The
aerodynamic and following forces were used as an example of circulating
forces. In the future we shall talk also about controlling forces which
depend both on the generalized coordinates and on the generalized velocities
and on the basis of the adopted terminology are a special case of "dissipa-
tive" and "circulating" forces.

Equations of Motion. General Solution in the Case of Instabllity

If, in addition to the potential forces defined by the function U non-
potential forces also act on the system

Ql=51 (t! g QI) ('l':zf_, 2,.... Il.),
the Lagrange equations assume the form (1.14). As is obvious from the
examples, the general procedure when rating the equations consists in the
following.
Let us consider the potential energy U, which is a function of the

generalized coordinates qi, q2,..., 9y and also contains the additive
constant:

U:U(Clqh..., qn) (1'26)

Let us take the system of coordinates so that the position of equilibrium,
with respect to which the movement is investigated, will have the
coordinates q1=¢,= ... =qn=0.

The constant c¢ will be determined from the condition U (c, 0,...,0)=0.

Let us assume that in the position of equilibrium of the system, the
necessary .conditions of stability are satisfied:

19
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In this case the function U(ql,.. . ,qn) , being expanded in a Maclaurin
series at the point (0,...,0):

n 1.8
— V' (L -L‘_“E."_’Lf_.
U=U0... ,0)+>_l‘ (5 )03 ;)_J Yl soam it

in the first approximation is represented in the form of a quadratic form
of the generalized coordinates qj, q2s.s++sdn’

n n ' n n
. u=+-3% Wl qiqk=_l v Ekuqi‘hv (1.27)
2 sand fwd 09109 2
Tl Rel {2l Ruw=1

where kik=kk on the basis of the known properties of displaced derivatives
of the functions U. In the position of stable equilibrium the quadratic
form of U is positively defined, that is, it does not assume a negative
value for any values of the variables.

The potential forces Qp,...,Q, acting on the system in an arbitrary position
Q3see+sly, are obtained by differentiation of the relations (1.27):

oU
—-Q =.0—-1- ?kqul + kgt + kyogai
/]
—Qy= m?hﬂt"‘%ﬂﬂ' oo tRongn (1.28)

.....................

U
- Qn=a =knlql+kn2q2+"'+knnqn'
qn

On the basis of symmetry the system (1.28) has defined properties.

Let us multiply each of the equations by qi,...>q, respectively and add.
Then .

n

n n n '
N U
_2 _—2———_—— E ; k =2U
p4 Q. - 991 ,_,' 1x9 r

)

20
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or

k : i \ oU
1 R —~ a.,=U.
2 E; Q= 2 P 04141

- i=1

This relation expresses the fact that if the system goes under the effect
of the external forces -Q1,.., —Q, from the position of equilibrium to

an arbitrary position qj,...,q,, its potential energy increases by the
amount equal to the work of the forces which accomplished this displacement.

Hence, it follows that _for a conmservative system (we are still not consider-
ing the forces Q1,...,Q) the work of the external forces in the closed
cycle (that is, the process where the values of the generalized

coordinates at the beginning and end of the process are equal) will be
identically equal to zero.

In general it is necessary to note that the condition kyp=k 1 is a
necessary and sufficient condition of comservativeness of tge system having
potential energy of the type (1.27).
Let us Introduce the kinetic energy of the system

S

T=—2—E 2‘ g4 j» (1.29)

Tt Gt
into the investigation, which is a definitely positive quadratic form of
the variables éi' q{. Substituting expressions (1.29) and (1.27) in the

1.1

Lagrange equations 4), we obtain the equations of the oscillations in
the form

Mg+Rg=0, : (1.30) .
where M and K are the symmetric matrices, )
; M=|mylt; K==llkyllly g=(q1---» qa)-

Then as the nonpotential forces éi, the circulating forces of the type will
be taken into account :

- - .31)
= — k,-ﬂj, (1

where the coefficients Qi and k (at least for one pair) are not equal
to each other, and the gegeralizgé forces which are the sum of the
dissipative and gyroscopic forces are:

21
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9
Nl »

’7 9 (1.32)

n.

where the coefficients kij and ks 31 can be arbitrary.

¥z
)
] 7 “ g
Figure 1.7. Closed cycle in the Figure 1.8. Qualitative dependence
_— q1, qg plane of the work of the nonpotential

forces on the flight speed:
1 -- damping forces; 2 -- disturbing
forces

Key: 1. Verjtical

Substituting the expressions (1.31) and (1.32) in the Lagrange equation
(1.14), we obtain the system

MG+ By+ Rq=0,

a special case of which is the systems investigated in the preceding section
and also investigated below.

What does the asymmetry of the matrix k generated by the presence of non-

potential forces Qi leac to (from the physical point: of view)? In the
case where n=2

- Ql = En‘h ‘i:km‘h; —Qy= ku‘ll + kn‘h

are external forces calculated considering the expression (1. 31) so that
ky gtk -

- Let us calculate the work of the external forces in a closed cycle defined
. in the plane (qy, qz) (Fig 1.7) by the following equations:

§=0; g=0; q>l=a; q2=b.

22
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We obtain a._ b . ~ 0 -
W= —J knqidg, — J (kzlfh -+ /"22‘72) dq, — 5‘ (kuqr{‘klz‘h)d(]r‘
a

a

; —JE)‘)‘]‘:‘/%:’ (R —Ry) ab. (1.33)

If §12'i21 0, the work of the external forces is positive, that is, during

the course of the indicated process the system will receive additional
energy.,

Thus, the asymmetry of the equations of the system creates conditions under
which the system can exhaust the energy from the environment, which is
exhibited in an increase in the amplitude of the oscillations of the
generalized coordinates.

In the investigated examples such conditions occurred when the parameters
v, P, B exceeded some critical values: VVorirical’ PPeri B>Bere

Consideration of the dissipative forces excluded from these arguments

complicates the calculations of the critical values of the parameter.

In general, exact analysis of both the circulating and dissipative forces

makes the corresponding problem far from elementary. From the physical

point of view in many cases the situation is quite clear, as is obvious,

for example, in the problem of flutter [30]: "As a result of the work

of the exciting forces, an increase in amplitude of the oscillations takes

- place which in the final analysis can lead to fracture of the structure. -
As a result of the damping forces, the amplitude of the oscillations
decreases, for the energy of the vibrating system is spent on overcoming
the damping forces, and if the damping effects are sufficiently powerful,

- the amplitude decreases to zero, that is, the oscillations are damped. The
aerodynamic forces, both exciting and damping, depend on the flight speed,
and, consequently, the work performed by them depends on the flight speed.
However, with an increase in the speed, the exciting forces can increase
faster than the damping forces, and beginning with some flight speed, the
work performed by exciting forces hegins to exceed the work expended by
the vibrating system on overcoming the damping effects. Beginning with this
flight speed, the oscillation amplitude under the effect of any random
pulse will increase, that 1s, the flutter increases., Fig 1.8 shows the
approximate variation in work of the exciting and damping forces and one
oscillation cycle with an increase in flight speed. If the flight speed is
less than critical, then the oscillations that occur damp; if it is
greater, then it takes place with increasing amplitude."

Thus, the presence of circulating forces of the type of (1.31) leads to
asymmetry of the system of oscillation equations, asymmetry (on the formal
side) leads to new effects which make the problem of stability and, later,
the problems of control meaningful.

23
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Let us consider an "asymmetric" model:

(..]:‘+ql+_glq'l=os (1.34)
; o+ 0o -+ oy ==0;

here ql(t), qz(t) are the generalized coordinates, a, B1» B, are the
parameters.

Let us propose that the characteristic equation of the system -
P (140 e — afads) =0 (1.85)
has the roots
Pra=izhio] pyy=—8 % v, (1.36)
indicating its instability.

Considering expressions (1.36) it is possible to transform the system (1.34),
excluding one parameter: :

Yr4(0? — ) g4 20y, =0,

. o . (1.37)
Yot (? == ) g — 200y, =0.
The characteristic equation

p‘-}—?(w‘-’—Bg)pg—}-(ﬁ—{‘w?)z:o. (1.38)
varies correspondingly.

Let us investigate the process of the development of the oscillations as a
result of some initial disturbance. .

The obvious symmetry of roots (1.25) compensates to some degree for the.
- comparatively high order of the initial system and permits in practice an
entire analysis in gen.ral form.

In accordance with the general theory let us set

) 1 (£)= Ac™ cos (vt @)1~ Be ¥ cos (of +¢a), (1.39)
g2 (£)== Age¥" cos (wf+ ¢+ x)4- Bee™* cos (vt Jgy—x). (1.40)
In formulas (1.39)-(1.40) the constantsA, B, $1s ¢ are determined by the

initial conditions qj0, 4995 410° 470> and the parameters p, X, by the
properties of the system itself, and they are calculated from the

expressions
Lo e o R—w? ._..3 2 1. 41
sin x=———s cosxe=omrri Q=8 +ot v .( : )
e 24
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The solution in the foim of (1.39)-(1.40) has little suitability for study-

ing the nature of the oscillations on the basis of the implicit dependence

of the constants A, B, ¢7, $o on the initial conditions. Let us perform _
some transformationms.

It is possible to consider the functions ql(t), qz(t) as the results of
the addition of two oscillations of identical frequency w with different
phases and amplitudes.

Using the expression

@cosx+-bsinx =Y a?F 5 cos (x — 8),

where _
- Sin = — . — a -
vare =i, |
i let us transform formulas (1.39)-(1.40):
91 (£)=M (1) cos (w44, (1)); (1.42)
g2 (£)=N (f) cos (wt -, (£)). o {1.43)

The envelopes M(t), N(t) and the "phases" d)l(t), lpz(t) are calculated from
the expression

M ()= | A%BT L Be~T L 2AB €05 (3, — 9); (1.44)
N (t)=qV/ A%¥ L B~ [ 2AB cos (g, — e+ 2x):  (1.45)
P, == ——l —ut XY
. cos, o [Ae cos ¢+ Be~% cos ¢,];

Cos Py == —N:—t) [Ae™ cos (9, +x)+ Be~ cos (g, —x)];
sin !{J1=7ﬁ% [Ae¥ sin ¢, - Be =% sin ¢,];

- sin gy== N(lt)

[Ae™ sin (,4x) 4 Be~¥ sin (9, —x)].

A further step consists in calculating the explicit dependence of the
integration constants A, B, ¢l, $9 on the initial conditions 910, 920

410> 420-

The system of equations for defining the constants A, B, 4:1, ¢, is
obtained by the usual method -~ by calculatiag the functions (1.39)-(1.40),
and also their first derivatives at the initial point in time t=0:

25
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A cos g, B cos ¢, =¢,0;
Acos (g, 4x)+ B cos (g —xn) =12 ;

A cos g, — Ao sin ¢, — By cos g — Bo singy=qy0;  (1.46)
Abq cos (p,x) — Avg sin (¢, 4 x) — Bed 003(%—1)—30"(?2—*)="—;" .

The relations (1.46) can be simplified by carrying out trigonometric
transformations and separating the terms containing the unknowns. We

- obtain .
Acosq-+Bcosp=fii
— Asing+ B sing=/x (1.47)
Asing+ B sing= fa
A cosp,— B cos g=f4

The righthand sides of the system (1.47) are calculated by the formula
Fi=4 ’
) .
fa=—qucig*+ 250 G

) . M2
fa=280(8 cosx—w sinx) 2 vy 203

. . . PAT I
fa=280 (8 sin %~ COS¥)qro— 70 g0

and they are, as is obvious, linear combinations of the initial conditionms
410> 9592 <'11 s 4 0 with coefficients that depend on the parameters §, u,
otherw%se de erm%ned by the properties of the system itself.

The system (1.47) decays into two independent subsystems, on the solution
of which it is possible to find the required relationms:

1 / 0 ! =
A=‘{ Vi -l (fa—fa)s iy Vi~ FP (fat fol
o (1.48)
sine=g2 (fi=fi [sinm=gn (fot £

cosp=gz (14 £ [eosm=k (fi—f0-

In order to obtain the final result it is necessary to substitute expressions
(1.48) in the formulas (1.44)-(1.45). As a result, we obtain the following
formulas for the ~nvelopes M(t), N(t): ‘
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M(t)=;,‘—i V Fon GRS F Fip S0 (B0 o
(1.49)

N (=555 VFo ch (B T Funsh 20+ Foyr

where . 2 2 - .2 2 .
f'OM=F0N=fl+f2+f3+ Ji Fiy=F\y=2(f1fi— fofs)i
Fou=fi— fi+ fi— i Fax={(fi— fi+ fi— fi) cos 24 (1.50)
F2(f1f2+ fafa) sin2x,

ch(2ot)=-5- (€% e 2); sh ()=t (¥ —e).

R
2
The "phases' ¥1» ¥, are calculated from the expression

tg 4= fa— fath(d) | tg%:“ﬂ + f4tg%) + (— fa + f1lgx) th(dy))

fi+ fatn(dr) ' (fi+ falgn) +(fy— fatg) the) '
(1.51)

with the exception of the cases where cos Yq, cos 1112 vanish.

Thus, the splution of the initial system (1.37) has the form

G BO=M(E)cos (o +4);  ga=NN (£)cos (vt ),

where the envelopes M(t), N(t) and the phases V1» ¥y are defined by the
expressions (1.50), (1.51) in the form of the functions of the system
parameters and the initial conditions.

Study of the Nature of the Transient Process

It is known that if the characteristic equation of the system has the roots
P1, 2=tiwg, P3, 4=tiwg, the general solution of the system has the form

g1 (£)=A cos (w,f 4-a,) 4 B cos (uf - ap);
g2 (£)= Agy €0 () 1 05) - B, €05 (wyf - @g).

The physical meaning of these relations consists in the fact that each of
the coordinates 47 4 generally speaking completes the sum of two harmonic
oscillations with dif%erent normal frequencies Wy Wg. These frequencies
are given by the system itself. The gystem also gives the ratios P1s P2

of the amplitudes of each normal oscillation in both coordinates. The
amplitudes and phases are given by the initial conditions. It is signifi-

cant that each of the harmonic oscillations has identical phase in both
coordinates.
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In the case of dynamic instability of the same system the situation is
- different. '

The relations (1.42)-(1.43) can be interpreted as the complex oscillations
of the generalized coordinates ql(t), qo(t) with phases and amplitudes
that vary in time.

What is new here by comparison with conservative systems is that the phase
shift between the oscillations q; and qy is given not only by the initial
conditions, but also the system itself (the parameter Xx), and, in addition,
it depends on time. .

The sharply expressed increas'ing nature of the oscillations is also a
theoretically new effect. It is clear that the source of energy here is
the external force proportional to q; and "encoded" in th2 coefficients
Bl, 82-

Let us consider how the instability develops in the system taken out of the
position of equilibrium by the initial impetus. Let us set S§t<<l, 6<<w.

In formulas (1.49)-(1.50) we shall limit ourselves to the terms of the
second order of smallness with respect to (8t):

sh(2o) =284 ch(28)==1+26%; th(s)=at.

. After simple transformations we find:

M= l/FOM +2Fg‘u [1+ Fim )+ Fuat (at)g]_

Fom + Fam Fom + Fan ! (1.52)
‘ Fon + Fan F F '
N {f)= ON 2N [1 1IN Y, oN tz].
. @ ‘/ 2 +F0N+F2N( )+F0N+F2N (®)

Then in formulas (1.50) let us set §<<w and let us estimate the order of
the functions f;(i-1,..., 4) with respect to the parameter §. We obtain

fo=¥Fu fe=bfo fom Tu i=Fo  (1.59)
where ‘

fim——=0 (i=1, .., ).
30 fi

The expressions (1.52) are taken in the form
M(t)=aytbat+cuths N(t)y=ay-+byt--cnths (1.54)

where a,u———'}—,% V FoatFan b.4(=715— '}/—ﬂ%—f—ﬁ‘—i-
CM=-—IT ——ﬁ)——___.l‘_’_. H
V2 VFou+Fan ) .
o rp——— 1 Fiv . 1 Fon
aN=’|’_}i‘]l ILON—{"FEN; . bN:ﬁ I-/_FoN+F2N P v Y2 VFon+Fen T
(1. 55)
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Let Fin=FiM. Then in the first approximation the oscillation envelopes
M(t), N(t) are approximated by straight lines

M(ty=ay-+byt; N(t)=ay+byt. (1. 56)

Let us estimate the aependence of the angular coefficients bN’ bM on the
parameter 8. Considering (1.53) we have ’

Fiv=Fu=2(fifs— fof)=tF";
VFu+Fu=V?2 Vf§+ fi=Fw,

S (1.57)
VEowtFan=V2V (ficosxF fysinxff:(f3c055F fy sin ),

where ﬁ(k) (k=1,2,3) are constants that have the order 1 by comparison with
the value of §.

-Substituting expressions (1.57) in formulas (1.56), we find
b‘"=§—~ bN=8—- . 4 . (1.58)

Thus, the envelopes M(t), N(t) are approximated for St<<l by straight lines,
the angular coefficients of which are proportional to the degree of
instability (§) of the system,

There is a set of initial conditions favorable in some respeéts for which
Jifo— fofs=0. (1.59) -

Then the coefficients Fyy=Fiy=0, and the envelopeé M(t), N(t) are approx-
imated by the parabolas

Mt)=ay+cpt’ NV(}) =ay+cpth

which for small 6t give smaller increments of the oscillations than
straight lines.

Then let us comsider the problem of the relative oscillation phases of the
generalized coordinates qj, 4.

For simplification let us set

‘71o=‘.120=0- 910 F 0, g #0.

Then on the basis of (1.47) £4=0, £
expressions

4=0 considering §<<w, we obtain the
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2 _-ﬁ-’..t;

f S 0Y
D= — L2t (3t)~—38
tgh 2 g (&f) 2

L= N8 e~ 3 Piladil L}

’ tgqflz fi+ fa18 fi+ 12187

For the small angles tg¢, (£)=%(¢): tgh()=%(¢) and, consequently,

— Fo\s o _ o L2 S1IE*Y,
qa,(t)~—(a7‘—)t, = a(fx—rfztg%)t

Let us denote

A(l)l=—8 £;

Aw=——§ fz’fl'gi.
fi4 fatg =

Then the solution to system (1.37) under the given assumptions is
approximated by the functions

qi1(t)=(ay+ byt) cos [(o+ Awy)t);

92 (8)=(an+ byt) cos [(0+ Awy)t]. (160

The physical meaning of the formulas (1.60) consists in the fact that the
system (1.37) behaves in the initial period of time just as if it were

made up of two unconnected oscillatory elements under the effect of periodic:
forces under resonance conditions.

In the general case of arbitrary snitial conditions the phase function ¢1(t),
p2(t) is more complex.

In conclusion, let us ¢onsider a numerical example having the purposé of
illustrating the proc:st of the development of the oscillations for the

case of commensurate values of the parameters (S, w).

Let 6=0.5; w=2.0 (the system characteristic) and qlo=0.2; q90=0-2;
410+d90=0 (initial conditions).

In this case, by calculating the necessary coefficients in the formulas
(1.44) and (1.45), we find

M) =027V e +e =14 L6
N @)= 1,008 Vel + e —1,965. '
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The following intermediate results were used in expressions (1.61):

sin % == 0,;1706: cos 1 = —0,8823; x = 151,9°% ¢ = — = —67,2°; 0= 4,25;
A= B=10,2576. '

The angles Y¥j, wz for each of the points in time are determined from the
equations

14y = — 2375 th (‘7) tgds = — 10,802 th (—‘2—)

The graphs of the functions ql(t), qz(t) considering the above-presented
data are presented in Figure "1.9, a. In Fig 1.9, b there are graphs of the
functions qlﬂt), qz(t) for another set of initial conditions:

4307920703 430=420=0-2-

Y1, 4. Y2

\
6 71\ 6
AR
' 41 P
. / \ .7
PR SR =1
L~ 1" ] \
- IS ) | L L
=== A S
A T
-2 N + =~ =) -2
a ~/ A b

Figure 1.9. Nature of disturbed motion of a double pendulum

In this case

M) =0125) ¢ - e —0,560;

N()=0531 Ve + e — 1,906.

The performed analysis indicates that even with a small degree of instabil-
ity in a short time interval the oscillations acquire large amplitude,
) which is inadmissible in technical systems. Therefore the analysis of
- the factors limiting the buildup of the oscillations acquires important
significance. In the following section a study is made of the effect of
the dissipative forces.

.
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1.3. Effect of Dissipative Forces on Stability
Root Hodographs Near the Stability Boundary System

Let us introduce the dissipative forces into the investigation. The
control system (1.37) assumes the form

2']:1',!'?1‘.{1‘&‘41'{‘?1?2:0; (1.62)
¢+ V292 + 22+ H41=0..

The characteristic equation of system (1.62):
(P + 1) (P4 vap-+a)—adfh=0. (1.63)
is written in convenient form for application of the root hodograph method

[8]:

or

@,(p)+A¥ (p)=0 (1.64).
_ “ (P‘Pv)+k“ (p_zll)“‘_:o'r

v=1 pe=l

where k is a variable parameter (-w<k<w); p, are the initial points of the
root trajectories (k=0); z, are the limiting points of the root trajectories
(k).

Setting p=6+iw in equation (1.63) and successively assigning values to k
in the indicated interval, we obtain the equation of the plane curve

S (0, 3)=0,

called the root hodograph or the trajectory of the roots of the linear
system. Let us consider a number of cases, taking the values of y; and vy
as the parameters. '

The stability boundarv of the system (1.62) in the absence of dissipative
forces is defined by “he equality

(1—aP+4aB By =0, . (1.65)
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Figure 1.10. Root hodographs for a double pendulum:
parameters ~-- damping coefficients Y1 Yz

Considering expression (1.65) the characteristic equation (1.63) is
written in the form (Y2=0)

Pt+(+a)s+ S Ly (2t a)=0 (1.66)

or (for yl=0) in the form
P(1+3) P EE g (4 1y=0, (1.67)

Calculating the characteristic points of the root hodographs corresponding
to the equations (1.66)-(1.67), we obtain the picture (Fig 1.10, a) where
the solid line corresponds to the positive values of vy (i=1, 2), and the
dotted line, negative values.

(For determinacy we set o=1.44).

From an analysis of the root hodographs it follows that if the system is
at the boundary of the dynamic instability (in the absence of damping),
the damping of one of the partial systems cannot make it stable. On the
contrary, in the given case the damping is a destabilizing factor.

Let us consider the more general case of y3#0, 72#0. The characteristic
equation of the system has the form

P40+ LRy p(p2 4 1) 415 (420 +0)=0. (1.68)

As 1is obvious, the initial points P, (for Yl=0) for the equation (1.67)
depend on the parameter.ys and lie on the dotted curve of Fig 1.11, The
standard root trajectories for Yl>0 (the parameter vY2s which defines the
initial and the limiting points, 1s fixed) are presented in Fig 1.11. In
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this figure a study is made of the most interesting region -- in the vicinity
of the imaginary access, for small values of the damping coefficients.

As is obvious, fixing the values of the parameter yj) and assigning a number
of values to the parameter y,, it is possible to make the system both

stable and unstable. The destabilizing effect is expressed most clearly

for small values of the parameter yp (or, on the contrary, the parameter Y1) -

(]

e 6,03

5,08
V=005

)

//
grsl—

] 0,25 ﬂ )

Figure 1.11. Root hodographs for a double pendulum near the
stability boundary:
parameters -- damping coefficients yj, Yo

Let us consider the regions of stability of the system (1.62) for arbitrary
values of the parameters y,, i=1,2. Let us write the characteristic equation
(1.63) considering (1.65) }n the form

p*+(v1+vz)p3+u+u+v.v2)pﬂ+w,a+vz)p+ﬂifl’-=0- (1.69)

Since all of the coefficients of this equation are positive, then (by the
Liénard-Schipard criterion) the en)v condition of stability of the system
(1.62) has the form

45>0,

where

2 — 2 - _
%:yﬂm+[ﬁu+@_JLfilﬁ+{ﬁ+w(l;m]_ﬁu4@{
(1.70)

- The stability boundary of the regions of the system in the plane (s ¥9)
is given by the equation 43(yq, Y2)=0, and in the general case it has the
form indicated in Fig 1.12. Here it is demonstrated, in particular, in
what cases there are one or more transitions through the boundary of the
region of stability on variation of one of the parameters vj. The best
version of the relation between the damping coefficients from the point of
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view of insuring maximum stability reserves of the system corresponds
obviously to the case of Y1V,

The last cznclusion also follows directly from the expression
Ag=2(1+0)y 20, where Y1=Y9=Y+

Now let the following condition be satisfied:
(1—af+ 40P, <0
for instability of the system (1.62) (in the absence of dissipative forces).

Let us denote ;=-(l-u)2-4a8162>0, and let us transform the characteristic
equation (1.63) to the form

P (14 v2) P (1 avivy) p’+(v2+v1a)l’+[w]=0.
(1.71)

‘. C i -

Y2 b | 4 e . ///
Z / /
7, .
- Z e 7 R
_ g5 3 25 —— -
,/ - ’ v ) .
‘ % / Yemoidvubocrms . Yemod vudocms
2y W 9 | b
, | %
72 v
0 45 10 0 45 w i

Figure 1.12, Regions of stability of a double pendulum in the
plane of the parameters Y1:Y2
Key:
1. Stability B

The equation (1.62) corresponds to the Hurwitz inequality
Ba=ayiy, +(1+0) Vi 73 — L9 (- Etw S
4 ”

The regions of stability constructed in the parameters Y1s Yy are presented
in Fig 1.12.

In the given case the root hodographs of the system can be investigated on
the basis of equation (1.71). In particular, setting yl=0 or y,=0, we
obtain the picture indicated in Fig 1.10, b, where, just as before, the
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solid lines correspond to the positive values of the parameter Yy, and
the dotted lines, to the negative values. As is obvious, the damping of
the oscillations of one of the oscillators will not be a stabilizing
factor if the system is unstable in the absence of dissipative forces.

Now let us return to the specific mechanical system as applied to which the
problem of the effect of dissipative forces on stability will be considered

in more detail.

Double Pendulum: Destabilizing Damping Effect

Again let us consider a double perdulum loaded under a following force [82].
Let us alter the pendulum system somewhat (see Fig 1.13), and let us set
my=2m; my=M. Let us introduce dissipative forces proportional to the

- generalized velocities $y (i=1,2).

- The kinetic energy T, the dissipative fupction D, the potential energy v
and the generalized forces Q1L and Q2 are defined by the expressions

! )
V=—-c(2i=20+a) Q="lin—e) Q=0.

My ImY oYy )48 (V2-G)

Yty y

1 2 ' . ) . . .
T="2— ”112(3‘?1+2<P1'Fz+‘?§); D==—]2— bxﬁ—{-—;— by (‘{’¥—2'Pl?2+?§);

(1.72)

- ‘ : Figure 1,13, Model of a double pendulum under the effect of

a following load and considering dissipative

forces
From the Lagrange equatior
o0 ) T o ow | owm
) =Ql' i=1v 2! (1-73)

4 oT\, 9D T [V
o)
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we obtain the linear equations of motion

Bmllg - (b, + bo) o1 — (PL—2) o1+ tnll,
-— bgq.’g"i‘pl —C) (Pg"—':o;

M2y — bygy — Coy+ MI%, 4 by + €9 =0.
(1.74)

Let us assume that the solutions of system (1.74) have the form
p=Ae?, i=1,2 p=lo. (1.75)

Substituting expressions'(1.75) in the system (1.74), we obtain the
characteristic equation

309442, 9%+ 42,2 2,0 4, =0 (1.76)
with the coefficients ag=a; a1=Bl+6B2; a2=7-2F+BlBZ; a3=Bl+B2; a,=1.

Dimensionless parameters are used in equation (1.76)
- m.op B 19 FaPh, .77
a=to]/ 2 B=rBos imig P=2. )

In the absence of damping (Bl=32=0), the characteristic equation is
biquadratic: :

294+(7—2F)92+1. (1.78)
In this case the roots 2y (j=1,2,3,4) have the form
1 7 " W 5
o=t s}/ F-(T-V2)x)/ F~(T+V3) (.79

and depending on the values of F they can be purely imaginary, complex or
real,

In the graphs of Fig 1.4, the roots are represented by the points of inter-
section of the corresponding curves with the horizontal plane which is
perpendicular to the F-axis and passes through the point corresponding to
the given value of F.

The axonometric representation of the graphs of the variation of the roots
and the rectangular projections of them on the real (Im Q=0), imaginary
(Re 0=0) and complex (F=0) planes are presented.also in this figure.
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10 Ren
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Fer 086
W 0 {0 Re@ 0 0 40 e

Figure 1.14. Rectangular projections and axonometric representation
of the roots of the characteristic equation in the
absence of damping '

As is obvious, there are always two roots with positive real part if
F>%-—V§=2,086=F .

For F=F, there are two pairs of equal roots, the real parts of which are

equal to zero. Thus, the system is unstable for FaFg. For F<F, all the

roots are different and purely imaginary. Consequently, in this case the

system is stable.

Let us consider the system with small damping, setting Bl=B2=0.01.

There are no simple expressions for the roots of the chéracteristic
equation (1.76) for Bj#0, By#0.

The numerical results obtained ar: presented in Fig 1.15 where three pro-
jections on the same three planes as in Fig 1.15 are presented to supple—
ment the axonometric r:presentation. Two roots will have positive real
parts for F>1.464=F;.

The stability of the system (1.74) can be investigated directly without
determining the roots of the characteristic equation by applying the
Routh-Hurwitz criterion.

In the given case the sysiem is stable if
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a2=2[—F+§(7+ B,BE>]>0;

_ g [5BiH8B) | 1 .
A2~—2(31“*‘632)[ F+[2(Bx+61’2) + 2 B@]}}O, )

48% 4+ 33B,B, + 4B}

o 2 1 aa
) %“ﬂ&+MJH$&w—F{kﬁﬁjm§ﬁE7+2Bﬁ%>&

- ' ‘ ”)\
Il L

1 L
~40 g 10 Re @ 00 10 IpR

Figure 1.15. Rectangular projections and axonometric
representation of the roots of the characteristic
equation in the presence of small damping

‘ In order that the system be stable, the value must satisfy the following
free inequalities:

, s
F<+++88; F<38ED 1 L g,

‘ 2(B -+6)
482 4- 338 4 4 __l_
F< 2(B2+7a+6)+ g BB (1-81
where p:.-_-—BL; 0B o0
By
Inasmuch as B -
o , 5G+8 __ 5y 8§ 10 7
2(6+6) 2 +;a+6< 3 < 2
4924338 +4 __ 5(8+8) _B+3 _5(@+8) _ 7
and 2EITB0) 2646 G+ <G48 <2
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for any valce of B in its range of variation it is obvious that the
critical load is determined by a third inequality, that is,

5 _Ap+3%+4 1 opp
Fa<0 Fo=arime T BB

The value of Fy thus depends on the ratio of the damping coefficients and
on each of them individually. :

For By<<l, just as for infinitely ksmall damping, Fd assumes the value
— 4824-333 44
=@+ +6)
which essentially depends on 8, being, generally speaking, smaller than F,
and never exceeding it. Depending on B, the ratio Fd/Fe was
represented graphically in Fig 1,16.

Faft

10 ,_7(:__1____'___._.__.

g8 . ??‘“959 ‘
| .
| :
I !

92 I ;
l O B

- » JJ
Figure 1.16. Critical load as a function of the damping
coefficient

It is possible to see that for B=4+5/2-=11.07, the ratio Fd/‘r‘e reaches a
maximum value of 1. ‘

Thus, in the given speclal case the destabilizing effect is excluded.

For B=0 the ratio Fy/F, reaches maximum value equal to 0.k16, that is, in
the investigated systcm with two degrees of freedom the maximum
destabilizing effect is about 84%.

1.4. Controllability of the Oscillatory System with Two Degrees of Freedom
Controllability and Observability Criteria

Let us introduce a controllable system

{|+qx+?xqz=u- ' (1.82)
42+042+03241=le-
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into the investigation which is distinguished from an "uncontrollable"
system by the presence of a controlling function u(t) in the righthand
side (C 18 a parameter).

Let us assume that on formation of the feedback circuit in the system
(1.82) a generalized signal (q1+uq2) i1s used where p is also an auxiliary
parameter..

In matrix form the system (1.82) assumes the form

(
where ;=[q, . A=[_l -—ﬂl] 5=[ 1 J: -=[ 1 ]'
9 —af;, —a c p

The first problem which arises when investigating the problems of controlling
the system (1.83) cgnsists in the following. If the system (1.83) is in
some initial state xqg, does a continuous control input u(t) exist which will
convert the system to the state x]_ in the time tj-tq?

With respect to the systems of the type of (1.83) the answer to this ques-
- tion will depend on the properties of the matrix K:

K=[b, AB]. (1.84)
Namely, it is required that the rank of the matrix (1.84) be equal to two:
rank K = rank [g, A_‘E] = 2, (1.85)

The matrix K for the given case has the form

K-—-'[l —T1—B¢ ]'

¢ —afy—ac

so that the condition (1.85) is equivalent to the condition det K=c+Bjc-aB
~0c#0, that is, the condition of controllability of the initial system
(1.82).

The equation

¢+Bic —ofy—ac=0 (1.86)
defines the straight line ¢ in the plane B1s By
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Different cases of location of the straight lines (1.86) for different
values of the parameters o, cC are presented in Fig 1.17 (solid lines).

The next question which arises when investigating a controllable system
(1.83) is the question of estimating the state of the system at the time
tg by the known input and output effects measured in the future, that is,
by the data of the functions u(t) and %(t) for t3tg. This problem is
connected with the fact that the required information is usually not
completely available, and it:must be reproduced by measuring the valuies
which are accessible to the actual measurement process (in the given case,
the values of v=qituqg).

If in the cgntrollability criterion (1.85) an important role is p_l)ayed by
the vector B'=[1, b], in the observability criterion, the vector g'=[1,u]
plays an important role, and the corresponding result has the form:

the system (1.82) is observable if the rank of the matrix

G=[g" Ag'] (1.87)
where
o=[1 —1—““!’2]equalaé-. ' (1.88)
p —B—ap

This condition is equivalent to the expression
det G=p -+ apB,—f —ap £ 0. (1.89)
The equation
B p+ap2f52—“pl—‘ap'=0 ' (1.90)
also corresponds to a straight line in the plane By, By. In Fig 1.17
the straight line (1.90) and (1.86) are depicted by dotted lines with the
indexes ((u), (e)).
Let us note the theoretiral r;as'ults of pertaining to the relation of the
controllability and observability of the object. This relation is called
the "duality" principlc and in the given case consists in the following.

The system  z=Ax+bu, u=u(v), v=g'% is observable when and only -

when the system

- -

X=A%+L%'n, u=u(@), v=b'% !

igs controllable (the stroke indicates transposition:of the matrices).
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Figure 1.17. Boundaries of the regions of dynamic instability
and lines of "uncontrollability" and "unobservability"
for a double pendulum

There are also hyperbolas in Fig 1.17

=_f(1—a) 1.91
=L (1.9

which bound the regions of instability of an uncontrollable system (1.82)
(for u=0), hereafter called the regions of natural instability (the double
crosshatching).

Considering the systems cf equations jointly

= — L%, py=—U

4 ‘ o’ (1.92)
afy—c%—e(1—a)=0 (c); | ap%y+tp(1—a)—Bi(x),

we note that téngency of the hyperbola (1.91) and straight lines (c) and
(u) occurs at the point

(—1—w2; c(1—0)2a); (#(1—a)e; —1—af2op),
shown in Fig 1.17.
Noting this fact, let us return to another important problem characteristic
of linear statiomary controlled systems -- the problem of control of the
eigenvalues. As before, system (1.82) is used as the model.
Modal Equation of a Dynémically Unstable System
The term modal is used because the roots of the characteristic equation

correspond to the components of free motion sometimes called modes.
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The problem consists in proper selection of the function u as a function of
the state of the system

a=—Fx (1.93)

F=(A-TBR)X. T (1.94)

will have a characteristic equation with previously prescribed arrangement
of the roots. .

Hence, it is possible to draw the conclusion that the condition of control
of the eigenvalues of the closed system (1.83) is complete controllability
of the object [the conditionm (1.85)].

Let us consider this problem as applied to the case where the uncontrollable
(u(t)=0) system is dynamically unstable. The purpose of the control then
obviously is elimination.of the harmful effect of the asymmetric cross

relations which are the initial cause of the instability. It is possible,
for example, to require that the roots of the system (1.94) be equal to the

roots of the initial partial system (in the absence of the relation B1Bo
and equation u(t)).

Thus, let us propose that the system (1.83) is controllable. Then the
canonical form

5 — A% bu, ' (1.95)

will exist, where
’ 0 1 T2 T0
. A= 9 -6= ]-
- [—0+ af i, v-'(l'*‘“] [ 1

The matrix of transition from the representétion {a, P} to the representa-
. tion {4, §) is unique -nd is calculated by the formula p_.(p, Ab] [b, AbI.

Performing the required cransformations, we find

P=——-1—[ —C 1 ]- p1— G-—pxl-' 1 ,
T~ €Ty —-aBg—{-c ﬂ;c—a _C—ﬂpz [4
B where t=—1—fic 1;2_—_—0,?2——(1&.

- Let the characteristic equation ¢A=p4+(1+a)p2+a(1—3162)=0'have the roots
p1,2=-6iim; p§ 4=6_-tiw (system (1.82) is unstable for u(t)=0).
?
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Let us find the control u(t)=—f'§(t), where "12'=[k1, k,] 1s the unknown
vector such that' the characteristic equation of the cfosed system has
the given form:

ou=pt-+ (214 23) 2+ Q0% =0,

where 912'922 are new (desirable) values of the squares of natural
frequencies of the system.

The vector ?<'=[kl, ky] in the canonical system (1.95) is calculated most
simply. Actually, substituting the values of u(t)=-3%(f) in

equation (1.95), it is possible to arrive at the characteristic
equation

_p2 R 1 _ -0
—a+oBf,—k; —(14a)—ky—p? '

or in expanded form, the equation
PP (14-a+ k)t (A + a—aB B,) =0, . (1.96)
Comparing the coefficients of the polynomials ¢A and ¢, we find

=212 — (@ —aff);
k=014 2 —(1+a) (1.97)
In order to find the coefficients k3, ko for the initial system (1.94),
it is necessary to use the formulas of transformation from the representa-
tion {A, B} to the representavion (7 b}:
%= Px; A=DPAP-Y; 5=PF; B =FP. (1.98)
Using the latter equality, we find:

—c [9}0] — (« — apiBy)] + [0} + 23— (1 + @] (¢ —ay)

b= ¢+ Be?— ac — afs ’

(1.99)
b [270} — (¢ — apiB)] + [} + 9 — (1 + W] Bre— )
= ¢+ pre? —ac —upy )

For example, let Q,"’:l;QZZL—_a,

In other words, let us require that the closed system (1.82) have the same
roots as the open system (u(t)=0) in the aEsence of a cross relation
afB1Bo; then, substituting the values of 2, 922 in formulas (1.99) we find
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by==—ac Bifa s pymtBib2
T3 — €Ty Tg — €7}

Let us note that in the general case the choice of ky and ky 1s not unique.
Therefore, the possibility for optimization of control is retained (if the
appropriate criterion is selected).

Considering the problem of control of the natural frequencies of the system
(1.82), the control is represented as a factor which neutralizes the
destabilizing effect of the asymmetric cross relation Bj#aBy. Therefore
the problem of selecting the coefficients kl, k2 can be stated as follows:

it is necessary to find the values of kj, ky for which the difference of

the natural frequencies 912,922 of the system assumes the given value for
- the additional condition

= k1 k=) min. (1. 100)
For example, let us require that in the characteristic equation of the
closed system

0% = 92 9f =024 422 (1.101)

the frequency difference AQ assumes the given value a2,

Then N -
klr‘-94+u'39—c(l—'_y.);
B=20ta?—c—1L (1. 102)
Minimization of the sum of the squazes ¥=F%+% leads to the following

cubic equation with respect to the unknown value of Q2=r:
23 4 (Bu? 22+ [ — 2 —0)Fat+ 418+ —2—-2e(1—%)]=0"

For example, let us set 0=2; )~(=-3. We obtain the equation t;3+6;2+22;-15=0,
having the positive soli :ions r=02=1,303.

Subgtituting the calculated value of 02 and the values of the parameters
o, X in the formulas (1.102), we obtain a relative result.

The given difference A92=922 —912 of the natural frequencies of the system

(1.82) is insured for values of hy=—1.001; 5=3.506-‘ satisfying the criterion
(1.100). Here 212=1.303; 2,%=5.303.
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The investigated problem permits the following geometric interpretation.
In the plane kl, ko let us consider the family of circles

T Bi+B=r (1. 103}

- of variable radius r (Fig 1.18), for the frequenciles 92, a2+a02 satisfy
the equation

p4+(292+A92)p2+(92+m)92=6, (. 104)

and on the other hand, the characteristic equation of the closed system
has the form

P+ P +a+F) + (o —aff) =0, (1. 105)

then, comparing (1.104) and (1.105), we find
AQ2= (1 4 a + %) —4 [a@ — ax + ;] = const. (1. 106)

The equation (1,106) in the plane'ﬁl,liz defines the parabola

~ 1 ~ 1
klzT[l+ﬂ+k2]—-(1(1—'l-)—TAQ2.

As is obvious from the Figure 1,18, the values found for’il* and kq
determine the minimum radius of the circle (1.103) for which tangency of
the curves (1.103)-(1.106) is insured, that 1s, the condition (1.100)

is satisfied.

MOm:umﬂer=Vﬁ#H=wﬂ

The problem of modal control of the system (1.82) as a whole also permits
geometric interpretation. Actually, let us consider the characteristic
equation of the system (1.96) and let us rewrite it in the form
(A=-p2Z=y+1Q) :

R4 (14 a+E)AFa(l—2)+%=0. (1.107)

Let us apply the procedure of the root hodograph method to equation (1.107),
constructing the biparametricjéamily of trajectories of the roots (with
respect to the parameters k

Let us denote by ¢ —AZ+(l+a+k )YA+a(1-x)=0 the equation for determining the
initial points p, (v=1, 2) of the root trajectories, On variation of the
parameter kp(0Osky<») the initial points are located on.the arc of a
circle (the dotted line in Fig 1.19). Since there are no limiting points
in the given case, for fixed values of‘ié the trajectories of the roots

_ (for Og¢kj<w) are straight lines parallel to the axis Q (the dash-dot lines
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in Fig 1.19). The root trajectories are shown in the same figure also
for negative values of the parameter kq (the solid lines).

\ L
\ //TL\)/

I\ ¢ -1\ T A
, ~A_7 mlnh

Figure 1.18 Calculation of the Figure 1.19 Root, hodographs for a
optimal parameters ki*, kp* of the double pendulum: parameters --
control system (ki*=-0.88; coefficients, ki, ko

ko*=2.34)

Hence, it is clear in what direction it is necessary to change the
parameters @1‘and'az so that the boundaries of the region of instability
will be reiched as fast as possible: it is necessary to increase the
parameter kp and decrease the parameter ky as much as possible.

For the given values of_ﬁ2 it is easy to calculate the boundary value
Re A=pk=—(l+atky)/2. :

Then the critical value of the parameter kj cam be calculated from the
expressfon  pitee—yut+ (140t pita(l—2).

For our example, if ko*=3.606, then k1*=-1.091r

Special Cases

The cbndition of cont:i: llability (1.85), as is obvious, guarantees the
possibility of modal co.trol of the system. At the same time this condition
i1g a sufficient condition; therefore, expression (1.86) still does not

mean that the given control cannot change the structure of the system, for

example, making it stable.

Let us consider in more detail what the physical meaning of the term
"uncontrollability" is as applied to the problem of stabilization of a
dynamically unstable system (1.82).

For the analysié it is necessary to again turn to thé system of equa}igns
(1.82), for in the aase of uncontrollability, the canonical system {A,b}
does not exist.
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- Thus, let us consider the controllable oscillatory system of the type

qi q.-: ngz=u:. (1.108)
age 1 aBygy ==CU;
ZZ= —(2’?141'{3’;202)- (1.109)

Let the system (1.82) as an object of control be uncontrollable, that is,
let the condition (1.86) be satisfied:

c4-Bie? ¢ —afy—ac=0. (1. 110)

On the basis of expression (1.86)
agy=c%+¢(1—a). (1.111)

The characteristic equation of the closed system (1.108)-(1.109) considering
the condition (1.111) will be obtained in the form

Pt 14k bkl |
—acte+Bictfhe prHat-kye

or in expanded form: _ , .
P14+t Q ot —ch) (14e+Q=0,  (1.112)
Q="F,+cky.

where
It is easy to show that the discriminant of this equation
D=(14-a+QR—4(@—ch)(1+ch+Q)
can be represented in the form
D=[Q+(1—a+2ch)},

consequently, the roots of the characteristic equation have the following
simple form:

pi=—a+cB; pi=—(1+ch)—Q. (1.113)
In this paper the assumption has been made everywhere that the coefficients
of the characteristic equation [including the equations (1.112)] are
positive, which means satisfaction of the necessary conditions of stability

of the corresponding systems. Then, as is easy to see, the roots (1.113)
are real and negative [the system (1.108)-(1.109) is stable].
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it is characteristic that one of the roots does not depend on the controlling
parameter Q. This means that it is possible to choose only the root

pr=— (14 cB) — (ki + k2

by appropriately selecting the values of k; and k,. Obviously, this is the
medning of the term "uncontrollability" for the system (1.82).

However, the problem here is a different one. It consists in insuring
stability of the system (1.82) by appropriate selection of the control,
including in the case of uncontrollability, that is, when the system
parameters 0y, By, By and the control parameter c are related by the
condition (1.111}. '

Obviously, the solution to the problem exists. It is convincing that the
nature of the relation (1.111) is such that even for Q=0 the system is
dynamically stable and it is possible to use the freedom in the selection
of the parameter Q to insure the required interval between the new natural
frequencies of the system

m§=a—‘031; W3=1+C.BI+Q'

- This fact is, of course, clear from the graphs in Fig 1.17. 1It is

) sufficient to note that the straight line (1.111) is entirely located in
the region of dynamic stability of the system (1.82), with the exception
of the point . -

__l—g¢, . (-0 o
b= —53 =" (1.114)

In this case

2 1+« p) 1+a
;I’2=——;—'—Q-

Here the value of Q=k1+ck2 is equal to the interval Aw? between the
natural frequencies of the controlled system (1.108)-(1.109).

Thus, it is possible tu insure dynamic stability of the system (1.82)
both in the case of conirollability and in the case of uncontrollability
of the system [in the sense of the criterion (1.85)]. In the last case,
although it is impossible to assign given values to the roots of the
closed system by selecting kj and k, it is possible to insure a "interval
of safety" between the natural frequencies, at the same time, compensating
for the unfavorable effect of the asymmetric cross relation BjB,.

The uncomservative oscillatory system with two degrees of freedom is a
convenient model for demonstration of an entire geries of interesting
dynamic effects connected with its potential instability (flutter, shimmy
[31], and so on).
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At the same time, such systems are of interest also in connection with the
modern control problems. Here, as is obvious from the presented example,
classical instability appears as one of the properties (jointly with
controllability and observability) of the system as an object of control.
These properties, being closely related, on the whole quite completely
determine the dynamic portrait of the investigated system.

Let us note that in the literature the problems of controllability and
observability are discussed as a necessary element of the problem of optimal
control. In this book we are Interested in the mentioned properties in
connection with the theory of stabilizability of liquid-propellant rockets
interpreted as oscillatory objects with a large number of degrees of freedom,
under conditions of 1ncompleteness of the information used for control,

. ! '

Here the first problem which arises is not the problem of optimal control,
but: thé problem of 'whether it is possibleiin'general to control the entire
system of o&cillatory elements for some given:structure of the control .
system (the automatic stabilization system) and in what cases amplitude or
phasewstabilizationlof ‘the object is expedient. :

al I RTLV R I P TS BN R TRNTS B NS RT AR

The investigated examples where the physical meaning of the concepts of
uncontrollability, unobservability and the possibility of modal control of
the system connected with them and also the specific role of the dissipative
forces are discussed, illustrate the class of problems of the dynamics of
the active segment of the space vehicle which is the subject of the investi-
gation in the following chapters.
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CHAPTER 2., STABILIZABILITY OF OSCILLATORY SYSTEMS WITH ONE INPUT

2.1. Terminology: Stabilizability, Structural Properties, Stability.
- Formulation of the Basic Problems

Two Problems of Motion Control Theory

Let us consider the problem of selecting the parameters of a line~r control
system in the form proposed by Yu. M. Berezanskiy. Let the equations of
motion and the initial conditions for some system have the form

=A%, %0)="Xo , 2. 1)

where.. ;c>=(x1, Koy eees u), u(t) is the controlling function;

[V al,,bl

Qgly... G20, '
A=t ... .. e (2.2)

L R annbn

Xy Xgees %k

Ne

Let the following be given: =#) the elements of the matrix A‘=“aﬁ“\ 4
b) the vector B={b1,....bp} (or the vector y={u,...,%n}.

It is necessary to f£ind the vector ¥ (the vector B respectively) such
that the matrix A will have eigenvalues given in advance

Bis Paeeeer e 4 (2.3)

Let us write the characteristic equation of the matrix (2.2) in the form
n

N\ P ' 2.4)
)\+% zﬂl—l, ’ . ( .

nel
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n n ]
Pr=="Y uh; p:.-=2 bl (2.5)
J=1

hal

where

¢r(¢*)r 1s the eigenvector of the matrix A (A) corresponding to the
eigenvalue A {X). Let us set

Pepi=—p,. (2.6)

The equation (2.4) assumes the form

SR oot (27

53

Let us show in_advance that by choosing the edge elements bys %

in the matrix A it 1s possible to achieve the situation where the eigenvalues

of the bordered matrix will assume any values given in advance or,
what amounts to the same thing, the coefficients in the characteristic
equation of the matrix A can be made whatever one might like,

Let us denote by Z21s Azz,. -+yZy the roots of the polynomial

Pz, m, 21, 2., 2,)=(3—2,) (2=22)...(2— 2,)=
=2"ta;(m, Zn---,‘z,,,]z”“"—{-...—l-a,,,(rn, Zieey Z),% (2.8)

the coefficients of which 04 are elementary symmetric functions satisfying
the following expressions:

or(m, 2.y Zp)=—(21+ ...+ 2,)=

1 Pm—l(o, My, Zye0ay zm);

(m—1)i
% (M Z11ee vy Zp)=212F 21251 "'+szlzm=
B | —2 .
= Pm=2(0, m, 2y,..., Z,) (2.9)
a3(My Zy.ny Zy)=— (212923 F 2129241 . .. )=
= 1 m—3 .
= (m—-3)l P (0, MZ1ye0y Zm),
g (m, z4..., z,,,)='(—1)"’z,zgz3,..., z2,=P (0, my, z..., 2,)
From (2.7) we find
n n n
O+ TTA—2)4 36, [T 0 —2)=0. . (@210
i-1 7= gy ‘
53
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- Considering the introduced notation let us represent the lefthand side of
the equation (2.10) in the form of a polynomial with respect to powers

of A: '
N [ 0y (1 Mo MIN B0y (2 Mvees M) F02 (8 Dieens M)

+ib/]k~-‘+[m2(n. e W)-F s M W)Fb1 X
j=1
X (= 1y Mg Ao B3y (= 1y Mo Rt

A [103 (1, hypens M) H0u(0 Menrs W) (—1, e M) et

oot 0402 (=24 Mooy Mg M0
A %90 (7 Apyeees M) 00 (7 Ayeres A} 4019, (,'1_1" M lu)+
v B0y (R—1, Myeery A)]=0. (.11)

- Let C3, CpseeesCpy] be arbitrarily given numbers. Let us demonstrate that
it is always possible to select the parameters X, by such that the coefficients

of the equation (2.11) will assume the values C], €2s+:5Cp4je From (2.11)
it follows that the unknowns X, bj must satisfy the following system of

h linear nonuniform equations:

20y (1) Apyeeny Ma)=0Cy3
19 (1 Myeeey Ag)F03(7s Apeees Ag) 0101 (=1, Mpeeey Xg) oo
el (n—1, Ayecrs Apy)=C2;
%03(7y Apyeees M) F04(ns Appess M) bioa(— 1, Moy Ag)ee
’ e baga (=1, Ayeres Mpct)=C3i (2.12)

.............. s s s s e @

%0y (s Mperes Aa)F038no1 (B =1, Mgsersy M)+
b8 (=1 Aoy Ay—1)=Cns1-

The determinant of this system has the form:

- A .
1 0 0
0y (7 Myeees Ay) 1 1
03 (72y Apyeeor &) (=1, Moy Ap)eee 0y (=1, Ayevns M)
oy Ao b)) Gp(— 1 Rgpuees Aa)eee (B =1y Mpeens Racd)

............................

Ot (M1 Myees A7) Ghg (=1, Myeres DV I P (2l TR TR Aa—i)
U,,(Il, )‘l""_’ )‘n) "n—l(”"—lv )~2n'-" )‘n) °n-—l(n"" 1, )‘1""! ln—l)

(2.13)
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In order to establish the resolvability of the system (2.12) for any
righthand sides of the type cy~o; (m, Al,...,Aq),..., en=on(ny Ayseees Ay,

Cn+l, it 18 necessary to demonstratethe determinant Ao 1s nonzero.

Expanding this determinant with respect to elements of the first row and
multiplying the first row of the determinant obtained by (n-1)!, the
second by (n-2)! and so on, we find: -

P1(0, -1, Mgyeer &) PP1(0, =1, Ay Dgpeeey Ao
Ro=| Pr2(0, n-=1, Mgyeeny M) PP2(0, =1, Ay, Dgpeees Ay

PO, n—1, hes h) PO =1 Ay dypes M
.es P"_I(O, n—1, }‘lv"l )‘n-—l) ’
e PE2(0, 1, Myeeny M) (2.14)

PO, =1, Ayeeey &)

A, =(—1)1{n—2}1... 114,

The determinant (2.14) coincides with the value at zero of the Wronskilan
for the system of functions: -

P()\t n'“']v )‘21 ;\31---1 l,,), P()\l n—li llu A3»---v xn))--- -
cees POy =1, My Ay 2. 15)

These functions are linearly independent. Actually, let us write the
linear combination of functions (2.15):

_ PO, =1, dgy Ao A WP, 1, Ay Aoy M)
e @GP, =1, Ay, A,_y)=0. (2. 16)

Substituting in expression (2.16) A=A1, we find
. oF Ay n—1, Ay Agenny Ap)=0,
for P(, n—1, M, Ag,..., A,; #0, then a=0.
Analogously, substituting A=Ag, A=Ag3s..., we find ay=0, a3=0,..., an=0.

Thus the equality (2.16) is possible only if o4=0 (j=1, 2,..., n) which
indicates the linear independence of the functions (2.15).

On the other hand, the functions (2.15) as polynomials of degree (n~1)
satisfy the equation

a"p
o

=0. ) (2.17)
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The linear independence of the solutions to equation (2.17) indicates
vanishing of the Wronskian A_. Consequently, the system (2.12) is

: g
resolvable, Q.E.D.

Thus, being given the values of M3, lgse«sesHpy] (the eigenvalues of the
matrix A) for finding the unknown ¥, Xy, by ?i=1, 2,..., n), 1t 1is
necessary to proceed as follows:

Calculate the coefficients of the polynomial cj (3=1,2,... nt+l);
Calculate the functions oy (k=1,2,...,m);

From equations (2.12) find X, bj,e.«s b3

Calculate the values of

= —B,(r=1, %..., n); (2.18)

Being given py, p,* arbitrarily so that the condition (2.18) will be
satisfied, solve the system:

n
2
p,=2 *x P
k=1
with respect to Xy.

First let the+column gé{b senes bn} be given. It is necessary to select
the edge row x={xl,...,xn%.

Obviously, the problem is resolvable when and only when all of the numbers
pr* calculated from the relation (2.5) are nonzero according to the given
values of bj. :

En this case the vector_I is expressed linearly in terms of the vector
P={p3s.e05 ppl:
Bs

pj=—’_o"1

Py

>
which means, in terms ¢ the vector b.

All of the numbers p,* are nonzero, if the scalar products

@ FNAO0 (r=1, 2., 1), O (2.19)

>
Usually the unknown eigenvectors ¢* of the matrix A* figure in this
condition; therefore it is difficult to check (2.19). Let us obtain the
resolvability criterion of the given problem in a different form.

Letlus expand the vector g with respect to the eigenvectors $1, 32,...,
gL, 3“ of the matrix A and let us apply the matrix A to this expansion
(n-1) times.

56

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3

FOR OFFICIAL USE ONLY

We obtain: . Co -
b=, )¢ +{b, 909+ + 6 e

A=\, @0 E+0E @+ M e
ATG=X (5, P F+EE e+ a0 een (2,20

8 0 e B W 8 % e & 8 @ B o+ s s e 0 s

A== B, $F TG $R B

Since the vectors Qﬁ.;ﬁp.q 55 are linearly independent. assuming conditiomn
(2.19) to be satisfied, we conclude that the vectors ((be*\)g\,..., (5, #")%")
are linearly independent. According to (2.20) the vectors'E,AEL“,An—lg
are obtained from the latter using the linear transformation with the

matrix .
1 1.1
ll kz'..-ln

U=p 2.2 |, @21

a—1 ya~1 yn—~1
ISP Y

the determinant of which is the Vandermondian, nonzero for Ai%Aj (1#3).
Thus, the transformation with the matrix (2.21) is nonsingular,” and
therefore the vectors

b, Ab, A%,..., A=TB
are linearly independently.

Y
In other words, the formulated problem (for the given vector b) is
resolvable when and only when the rank of the matrix

K={B, AB...., A=TE|

is equal to n:
Ak=|5: AE"" An—l-b‘|=0- . /, ZZ)

Let us invert tte problem, that is, let us assume that the vector i‘is
given, and that it is necessary to find the vector B. The condition of
resolvability in the given case has the form -

@ £0 (=1, 2,..., n). R

The systems of vectors {¢3} and {¢*1} form a conjugate pair @w,;*g:=5”,

Here : ,4/5*35;2}}@*1,
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We can therefore write:

& - - - Vn S ) =
’ F=3 G &) ¥ AF=JNE ¢ (AT E=
i=1 i=l
n -
=7 e

i1
We have three system vectors:
(#)5 ile )i (&) AR s (AY™1E).

Their linear shells coincide; consequently, the linear independence of one
of them implies linear independence of the rest. Thus, we arrive at the
following condition of resolvability of the inverse problem (finding the

_ vector B): the rank of the matrix

G=[lg', A% \es (A2

is equal to n, or

Ag=[g"s AZ 1errs (AP-Tg'| £0. 12./4)

7 The conditioms (2.22), (2.24) in modern terminology are called the

- controllability and observability criteria of a linear controllable system.
It is significant that they reflect not only the properties of the object
(the properties of the matrix A), but also the properties of the object
with respect to some correction device —- the properties of the pairs of
matrices (A, B), (4, B).

Let us note that the modern view ofvthe properties of controllability and
observability of a linear object of control consists in the following.

The dynamic system .

- x ()= A% () FBu(t), v=(g, %) (0, 45)

: : > >
is called completely ccntrollable if for each initial state x =x(0) the
piecewise continuous-ortrol u(t), t20 and the time t)<= are found such
that the trajectory x(t) of the system corresponding to the control u(t)
and the initial state i, satisfies the condition %(t)=0.

Thus, the controllability can be considered as a modern development of the
constant of stability.

Then, the system (2.25) is said to be entirely observable with respect to
the output

v=(g, %), h<t<ty
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)
if for any vector p the value of (pxg) at each point ;0 can be restored
by measuring v(t)}, tyststy.

The controllability and observability as structural properties of a linear
object are related to each other by the principle of duality which in the
general case consists in the following.

The linear stationary system

X O= A% O+ Bu), (2. 26)
C Gm=Cxp | |

is observable when and only when the system

XO=AX0+Cu),

n T (2.27)
yO)=B8'X()

is controllable.

Here A, B, C are matrices of the dimensions nXn, nXm, pXn, respectively.
The vector u(t) has dimensionality mX1 [the system (2.26)] or pXl [the
system (2.27)].

Let us return to the other problem where the concept of structural proper-
ties is interpreted differently.

Let us consider an oscillatory system with one input

) S AT b v=(g, X); (2.28)
U= ko'U+ kl'é, (2' 29}
where the matrices A, 3?, E’ have the following special form:
0a a8 . : « Q,
00 A9y Qg . . . Qg
0064 0 ...0
A=l ;
_ 0 0 0 %9 . . 0
. . c,,’
b 0
bg 1 “
o Nbafl e _|t—m1
b= 8 = p
bu? £ — M2
bun —'"]rln
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The system (2.28)-(2.29) is characterized by the fact that in it control
is realized only with respect to one parameter Vv, by which the controlling
parameters kg, k; are adjusted. Here the remaining oscillators (the
auxiliary oxcillators), generally speaking, can also be stable. The prob-
lem consists in investigating the stability of this system as the set of

_ (n+2) oscillatory elements.

Let us first analyze the controllability and observability of the object of
control (2.28), using the representations of (2.22), (2.24), for the
matrices K and G. Calculating the mentioned matrices directly and excluding
the generalized coordinate xj from the investigation, we obtain the follow-
ing result.

The system (2.28) is controllable (for oi#uj), if
by £0; by F0(/=1, 2,000, m) (2.30).
and observable if
' M #0 (=1, 2o m). 2.31)
The system (2.28) is controllable and observable if
b £0 (=1, 2 m). . (2.32)
As is obvious, the structural properties of the system are defined by the

vectors b and g, the components of which bcj’ n':1 play the role of
characteristic system parameters.

The system of equationms (2.28)-(2.29) is a linear system which usually is
investigated with the application of well-developed frequency and operating
methods. Let us use the approach based on the application of the Hermite-
Bealer theorem.

The characteristic equation of the system (2.28)-(2.29), omitting the zero
roots, is represented in the form

& (p)=0o (1) +L (P) @, (P°)s (2.33)
where

s oo () =r*T1 (4%
j=1

m m m b. .
‘”~(P’)=—ball'lw’+°3)*Xcm}ﬂ(p%a?)}, ey -
=1

-1 1]

60

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3

FOR OFFICIAL USE ONLY

Let us transform the equation (2.33):

#11 (p=+a3)+xo{n ) z et 1 (2 ,,)]

J=1 j=1 i=1

- oL+~ e i) =0

J=1 J=1

where *o=Fhobs q=hbs.

Let us use the following corollary of the Hermite-Bealer theorem.

In order that the polynomial ‘l>(p)===h(1:2)+pg(p2 be a Hurwitz polynomial,

it is necessary and sufficient that the polynomials h(u), g(u), where

u=p“, make up a positive pair. In other words, the roots of the polynomials

h(u), g(u), ug, Ugseens Ups VI, Vseesy Vn must be permutated in the
following way respectively:

0 <0<ty <0< < Uy e (2.34)
Iﬁ the given cage
=k W=ngir
ho—u"(u-l-cj) Ry ( u)—g,(u "(u-{-g]) Ecmful'l(u+=z)

J=1
I=1

Let us simplify the analysis by proving the following statement. The
- polynomial

I (P)=[ho(P*)+-xohy (P)] -+ 21 ks (17) (2.35)
is a Hurwitz polynomial when and only when (for xp>0) the polymomial

) JFi(p)=ho(p))-Fxophy (PP). (2.36)
has this property.

For the proof let us set:

ho(P)=aqp™ 2, im0 ... '-f-am—xp’;A :
Iy (P°)= &\ (P)=bop™m=V4-boyp2m-D 4 L b,

For the polynomial (2.35) let us construct the Hurwitz matrix
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uby by xb; %by...0

ay ay-+xoby aztroby @z-l-2%0b;...0

- 0 ) %h, #,0y...0
ar=|| 0 ay 2+ axtxghy...0 (2.37)

- 0 0 %,by 0b...0

0 0 0 0..0

Subtracting the third = row multiplied by -x0/x1 from the second row of the
matrix (2.37), the fifth row multiplied by the same number from the fourth
row, and so on, we obtain the matrix L equivalent to nP:

nby uby *;bﬁz—r x,l;s. ...0
() a, a, az ... 0
n 0 xby by wbs.. .0 ) (2.38)
0 ay a, as ... 0 ’

.............

0 0 0 0 oo Kobm_|

The minors of the matrices wp and 7p (the Hurwitz determinants) for the
polynomials (2.35)-(2.36) coincide, from which it follows that instead of
the equation (2.35) with the matrix =, it is possible to consider the
equation (2.36) with the matrix (2.38;, which proves the statement.

Thus, in accordance with the conditions of the formulated theorem for
stability of the system (2.28)-(2.29) it is necessary that the roots of
the equations be permutated

w () =p Tl (p’+a?)¥—¥0;
ai=< {1 (+d) = Sem Il (p2+c?)]=b

j=1 j=1 =1

in the order indicate” by the inequalities (2.34). For this purpose,
obviously it is necessw.cy that:

£ (0>0 g (@< gi(e)>0... (2.39)

Substituting the values of u=0, u=-012;...; u=-g 2 in the function gj(u),
successively, we find that the inequalities [2.33), and together with them,
the conditions of stability of the given system (2.34) are satisfied if:

) >0 >0 (2. 40)
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(the requirements on the parameters of the control system);
b) bany>0; j=1, 2,..., m (2.41)
% (the requirements on the parameters of the object of control).

As 1s obvious, the situation is such that the stability of the given system
(2.28)-(2.29) can be insured as a result of the successive performance of
two operations:

Adjustment of the ceontrol system parameters [in order that the conditions
(2.40) be satisfied];

Selection of the parameters of the object of control in accordance with
the inequalities (2.41) (having the sense of conditlons of structural
stability of the object).

Let us introduce the space of the parameters of the object of control of
dimensionality 2m( 2m (b, .. ,bap 01y’ ), in which the conditions of

uncontrollability or observability of the system
boli=0 (j=1, 2,..., m) ’ (2.42)
are isolated by certaiﬁ boundaries.

The conditions of structural stability (2.41) of the.object of control
provide the decoding of the regions on both sides of the boundary (2.42),
which permits investigation of them &s a generalization of the Kalman
conditions as applied to the investigated special problem.

The establishment of the conditions of the type of (2.41) in the general
case of oscillatory systems including n oscillators and constituting the
object of control with one input is the basic problem of further analysis.

Here the central event is the theoretical possibility of the separation

of investigation of the object of control from analysis of the closed
system as a whole within the framework of reasonable assumptions, which in
the given case leads to the necessity for introducing the concept of
controllability and observability of the system (problem 1), structural
stability (problem 2), and then the concept of stabilizability of the
object of control.

Formalization of the Object of Control and the Control System. Statement
of the Problem

Let us consider the system of differential equations
X =eBx+ Ax+bu, (2.43)
63
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where ; is the vector of the generalized coordinates of the system:

P is the control vector; u(t) is the control input; A is the matrix of

dimensionality nXn, the elements of which depend, possibly, on r parameters
V1aV2sesesVyp} € is a small parameter. -

Let us make the following assumptions:

I. The system (2.43) is a set of commected oscillators characterized by
the frequency oi (i=1, 2,..., n), and it can be (for u(t)=0) both stable
and unstable as a result of the effect of positional nonconservative
forces.

- II. The elements of the matrix B of generalized dissipative forces are -
small, which is characterized by the introduction of the small parameter €.

1II. The variability of the coefficients of the system (2.43) is small in
the characteristic time interval T~27/0.

- Then let us propose that the measuring device of the control system receives
the signal : -
v(0)=(g %) (2-4)

which is a physically observable value; the vector §=(gl,...,gn) is the
observation vector for the investigated system.

The equation of the control system will be assumed in the following form:
L(p)u=Li(p)v, (L)

where L(p)=L1(p)/L0(p) is the transfer function of the control system
given by its frequency characteristic : z

L (iw)=A () [cos ¢ ()4 sin ¢ (w)].
With respect to the control oystem we shall assume the following:
1. The eigenvalues of the operator Lg(p) belongs to the reglon of
stability Q, which dces not intersect with the region of eigenvalues Qp
in the matrix A for all the variations of the parameters V], V2,...,Vy in
the given region.
2. The disturbances Apj (=1,2,...,n) of the eigenvalues (p 2) of the

matrix A caused by the effect of the control system are small in the
sense that IApj|<<9, where Q is the characteristic frequency.
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Figure 2.1. Roots of the characteristic equation of an
open system: '
0 =-— object of control; x -- control system

3. The condition sign [Im L(iws]=const is satisfied, where wj=Im pj;
py are the eigenvalues of the matrix A.

The condition 1 means that the control system as an element of the closed
automatic control circuit is asymptotically stable, and it retains this
property under all conditions of movement of the investigated system.

Fig 2.1 shows the roots of the characteristic equation of this system (2.43)
including three connected oscillators characterized by the frequencies

01> 02, 03 (the symbols O) (u(t)=0, e=0). On the same figure the multipli-
cation symbol denotes the eigenvalues of the operator Lg(p) satisfying

the condition 1.

_ The condition "2" obviously imposes restrictions on the amplification
- coefficient of the control systems and means that the eigenvalues of the
- closed system made up of the object of control and the control system are
closed to their rated values (Fig 2.1) calculated in the open state of the
system (u(t)=0).

Condition "3" is the condition of "uniformity" of the phase shifts under
the effect of the operator L for all of the eigenvalues P4 of the object
of control. . ) :

Fig 2.2 shows the amplitude and phase characteristics of the control
system satisfying condition 3. 1In the given case, as is obvious:

sign(Im L (o)) =+1 (j=1, 2, 3).

Let us investigate the problem of the so-called phase [56] stabilization of
the object of control (D), and accordingly let us consider the following
problems.
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Problem 2.1. Let the dynamic system

-

A= AX Y Tu, 0= P (D)
Ly(p)u=L,(p)w, ()

be given, where the object of control (L) is defined by the properties
I-I1I, the control system, by the properties 1-3.

It is required that the regions in which the closed system (D)-(L) will
be stable for any control system satisfying the conditions 1-3 be
isolated in the space of the parameters of the object (D). ’

Problem 2.2. Let the dynamic system be given:

X=Ai+4bu, o=@ X (D)
Ly(p)u=L,(p)v, (L)

where the object of control is defined by the properties I-III, the control
system, by the properties. 1-2.

14
Alw)
3 - B
F ny” = "
e [ plw)
VA N S —
¢ g 0 Gy hd
2 -]
S

Figure 2.2. Standard phase-amplitude characteristics of the
control system

- What should the requisements be on the regulator as alternative (3) in
order to insure stabil.cy of the system (D)-(L) in the given region of
variation of the parzmeters of the object (D)?
Let
00 ()= aop™ + a0 o Pt O (2:49)

be the characteristic equation of the open system [for
4 (=0, o(t)=0%; p, (/=1 2,..., n) » be its roots.

66

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3

FOR OFFICIAL USE ONLY

- Then the case
p=—uv; (j=1, 2,..., n) (2.46)

corresponds to the dynamicﬁlly stable object (D), the case

1771.2=0>ii‘"; Paa=—0 v . (2.47)
corresponds to its dynamic instability.
Then let us denote

(PE — 4) Lo (p) — (5E) L (/=00 (7%) Lo (P)+ 0y () Ly (1)=0  (2.48)

as the characteristic equation of the closed system (D)-(L);
_ W(p)=\;/ﬁ -- the transmission function of the control ob_"]ect;

®); v(p), u(p) -~ the Laplacian transform of the generalized coordinates
v(t), u(t)a

uk(k=1, 2,..., n-1) -- zeroes of the transmission function Wip)s

Ak (k=1, 2,..;, n) -- the :ones of the transmission function W(p);

K=(B, Ag, ceey ADIB) - the controllability matrix of the system (D);
c=(¢', A'E', ..., cA')n41§') -~ the observability matrix of the system (D).
Simultaneously with the system (D)-(L) we shall also consider the system

V=AY +Bu, v=4"Y, u=L(p), S (2.49) ®

(where A=diag {Al, Agseces A }) describing the movement of the dynamic
system in the baSe made up of the eigenvectors of the matrix A,

Let us introduce the following definition.
Definition 2.1. The object of control (D) will be called stabilized, if:

a) The ones Ak of the transmissién function W(pz) of the object are
prime, real and negative; :

b) The zeros Ak and the ones ug of the transmission function W(pz)
are permutated in the following order: ‘

V' }1<P1<7‘2<Pz<---<P~n—1<7\,,.
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Definition 2.2. The unstabilized object of control (D) will be called
- dynamically unstable if the condition "a" of the definition 2.1 is violated
and structurally unstable if condition "b" is violated.

The stabilizability criterion, the formulation of which is the purpose
of further analysis, is the basic instrument in solving the formulated
problems (2.1) and (2.2).

2.2, Study of the Stabilizability of Oscillatory Systems with One Input
Quadratic Form (S%, i).

Stabilizability Criterion

2

Let us propose that the roots p“ of the characteristic equation pjz of

the open system
O (P)=agp*™ - ayp¥m-D 4 ... 4-aym—1)p* + @2 =0 (2.50)
are real, prime and negative (condition "a" of definition 2.1 is satisfied).

The case of dynamic instability (2.47), that is, instability of a special
type, is considered separately (section 2.3, Chapter 2).

Let us introduce the'stabilizability matrix S=GK'l associated with the
- controllability matrices K and observability matrices G. Let us denote
also by A? (j=1,2,..., n) the successive principal minors of the matrix
S=Il§ijI1|", V0, %2 %) " the number of sign changes in the series

Ay K2y veey Xppo

The following statements with respect to the properties of the matrix S
are valid:

1

Property 1. The matrices S and § ~ are symmetric, that is,

S8y (ST =81

E;ogf. ‘ Let us first de.onstrate that on transformation of the coordinates
x=Ty the matrix S varies in accordance with the equality

S=T'ST. (2.50)

Actually, the transformation EET§ reduces the system (D)~(L) to the form

G =73+ Bu, v= ), v= LW,
A= T-1AT, B =T-ib, g=Tg

o

where
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Here, 1t 1s obvious that
' R=T~K G=T'G
Hence, comes the correctness of (2.51):
§=8KR-! =T'GK~l =T'ST.
Let us return to the proof of property 1.

For the system (2.49) we can write:

K =diag (B, Ba...., B} Uy; G = diag (hy, hy,..., k) Uy, .

where UV=Uv Vand
det Uy 0.
Consequently,

§=GR-1 = diag {mf7", had7',..., ha87') =5,

(A5 Agseees Ay) is the Vandermondian matrix:

Then let us perform some nondegenerate transformation Y=le. We obtain

i =~ T w o~
§' == (Tlsrl), =T,8'Ty = T;STl _—...3,

Since T, is an arbitrary transformation, the symmetry of the matrix S is

- proved.

Property 2. The sign determinacy of the matrices S, Sl does not depend

on the base,

Proof. Let us place the quadratic form
= (5%, %)

in correspondence to the system (D).

Since on the basis of the equality (2.51)

B = (S, §.6)=(I'STy, §) = (STH T§)=(SX, =,

> > :

on transformation of the coordinates X=Ty the form n does not change,
and, consequently, its properties do not depend on the base, but are
determined by the internal (structural) properties of the system (D).
In particular, this pertains to the property of the sign determinacy of
the form (Si, ¥). On the other hand, by definition, the matrix S is

sign determinant if the form v is sign determinant.

Consequently, the

property of sign determinacy of the matrix S does not depend on its

specific representation in some base.
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Now let us formulate the following statement -- the criterion of
stabilizability.
The object of control (D) is stabilizable when and only when:
a) All the eigenvalues of the operator A are prime, real and negative;

b) The matrices S and s-1l are sign determinmant, that is, all of their
eigenvalues are simultaneously either positive or negative.

Proof. The characteristic equation of system (2.49) is 1(PPE—A) Lo(p)—BH Li(p) | =0.

n n
hence @ (p?) =Y kBl (p2+0s2).
=1 jpi

For determinacy let us set 0<m;|_2<uo22<...<mn2 and let us calculate the
value of <l>k(p2) at the points p2=-‘-wj2(j=l,2,...,n). We obtain

n n om .‘
o — o) = N Bihs T (o] — ) = Bmbm 11 (] — v
=1 iz J#m

Let us introduce the notation
Op(— o) = Bmhmbm (m=1,2,..., 0).
Considering the alternatability of wy we obtain

- A>0; 8;<0;...5 Ba(—1)"+1>0.

From geometric arguments it is obvious that for alternation of zeros
and ones of the transmission function of the object W(p2) it is
necessary and sufficient that the following inequalities be satisfied
simultaneously

B (— ) >0. Bp(—0)<0,. .y (— DM O (— w2)>0;
By(--ud) < 0, Dp(—wd) >0,..., (— LA 0 (—0d) < 0,

From the presentéd inequalities it follows tﬁat the zeros Ay and the ones
ug alternate when and only when

.sign (hB;) = const. . (2.53)

As a result of the condition (2.52) the statement is proved, for

sign (i) = sign (hif7")-
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Note 1. In the arbitrary base the stabilizability criterion of the object
(D) has the form

V1, &,..., 45)=0 (2. 54)
[as the condition of positive determinacy of the form (Sﬁ, ;)] or

V1, A, AD=n _ (2.55)
[as the condition of the negative determinacy (SX, %)].
Note 2. From (2;52) we have

“det R=piy. .8, det Uy, detO=ryhy...h, detUy.

For controllability and observability of the object (D) it is necessary
and sufficient that the following inequalities be satisfied

WL #0 (=1, 2., n). (2.56)

Comparing the conditions (2.54), (2.55) and the stabilizability condition
(2.56), we note that the latter are stronger (and, consequently, more

‘meaningful) conditions imposed on the system (D) as on the object of
control, . :

Note 3. 1If .
hfy=0 (2.57)
for any i=f the corresponding zero Ay and one jgcoincide. Thus, the
- condition (2.57) as the condition of uncontrollability of the object (D),
in terms of the transmission function of the object of control, means

cancellation of zero and one, that is, the factors (p2+u&) and (p2+A£)
in the numerator and the denominator of the fraction W(p+4).

In conclusion let us prove the following statement.
If the investigated dynamic system is stable for any values of the
parameters of the object and the control system satisfying the conditions

(1)-(3), it retains this property in the region of parameters given by
one of the equalities

V1, 85..., AD=0,
V1, &l,..., A)=n;

in other words, when the object of control (D) 1s stabilizable.
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Proof. When studying the small disturbances of the natural frequencies
of the object of control (D) the following approximate formula exists:

Op(—wp) [ImL(iu)
‘1'6 (— m}) P2y

Re Pj= — }(Im 1, 21“" ”)v (2'58)

which for the values of @k(-mj)(j—l 2,..., n) calculated by the formula
(2.58) and for By = "(p2+ gives

1
Re pj=-3 BikjIm L (iv)). 2.59)

As a result of (2.59) and property III of the control system the last
equality proves the statement, for if the system (D)-(L) is stable, then
for all j obviously e N

Repj < 0. (2. 60)

The results obtained obviously solve problems (2,1) and (2.2). Indeed,
the conditions (2.54)-(2.55).include only the parameters of object of
- control (D). On satisfaction of the conditions, that is, on realization of
certain requirements on the parameters of the object of control, the
closed system (D)-(L) is stable for any regulator defined by the conditions
(1)-(3), which is required in the problem (2.1). On the other hand,
calculating the signs of the minors A8 (j=1, 2,..., k), it is possible
. to determine for which j=% the criterion (2.54)-(2.55) is violated and on
- the basis of the condition (2.59) which phase conditions ¢(w;) are needed
in order to insure satisfaction of the conditions of stabiligy (2.60),
that 1s, the conditions of the problem (2.2).

The general conclusion for the performed analysis consists in the fact
that the structural properties of the oscillatory system (D) with respect
to the control system (L) can be investigated using the quadratic form
given by the symmetric matrix S=GK~1 on the basis of the stabilizability
criterion (2.54)-(2.55) without using specific information about the

- parameters of the control sysiem. This turns out to be highly significant
circumstance, as 1is obvious from what follows, when designing oscillatcry
systems.

The regions of nonstabilizability obtained on the basis of the formulas
(2.54)-(2.55) include (ty definition) the regions of dynamic instability
of the object of control (D). Here the boundaries of the regions of
instability have, on the basis of condition (2.55), the property that

one of two properties of the system -- controllability or observability —-
is lost along them.

In order to illustrate the close relation of the mentioned properties of
the dynamic system (controllability, observability, dynamic stability
and stabilizability) let us again return to the example in Chapter 1 --
the controlled system of two oscillators.
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Example. Let us-consider the dynamic system I including the object of

control -
© x=Ax + by
-— _1 ha r 1 -+ 1
st ae] S, TH ] @
and the control system - ) o
a=L(v, v=_g, 3. “n

Here By, B, are the coefficients characterizing the asymmetric position
relation o% two linear oscillators corresponding to the indexes 1 and 2;
a>0.

The object of control (D') turns out to be stable if

(! —a)+4afify < 0. .61

It is proposed that the control system satisfies the conditions I-II, that
is, the closure of the system (D') by the control system (L') does not
disturb its oscillatory nature.

Let us calculate the elements of the matrices K, G, S=GK-1:

K = =8"

17 1% _ 1 Tg — €N v.l—'n,‘
¢ T % Tg — €T [[ 14Ty — %] %9 — UTy|
U= —1—Bie; o= —afy—ac; % = -~ 1 —apfy} % = — By — ap.

o]

The condition of stabilizability of the object (D) has in the given case
- the form
V(1 A a3)=1{3}.

which is equivalent to the condition

] det § = det (KG-1) = 2201 o

— (2.62)

Using the system of dimensionless parameters, the inequality (2.62) is
presented in the form

(1 + apBy — By — ap) (¢ 4 Bie? — ac — afy) > 0. (2.63)
It is easy to see that the condition (2.63) can be obtained just as the

condition of alternation of zeros and ones of the transition function of the
object of control which in the given case has the form
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221 -+ pe) + (& 4 pe — pady — Bic) @.60)
V=Y pi o+ @—abil)

where y>0 is the parameter.

Considering the following systems of equations jointly

4 ( pp= -0, [ Br= -0,

afy—cB—c(1—a)=0 (c), | ap?p4p(1—a)—3;=0(p),
let us note that tangency of the hyperbola 8182=-(l-u)2/1m and the straight

lines (c) and (u) occurs at the points designated in Fig 2.3 by the
symbols A and O respectively:

[_1—(1_ c(l—a)]. [pk(l—0a), _1—a
- 2% ' ][2 ' am]'

The following cases of mutual arrangement of the boundaries of the regions
of dynamic instability and structural instability of the object of control
(D') are possible:

. a) ¢<0, p>0, a>1 or >0, u<o0, e<l;
b) <0, p<0, a>1 0r¢>0, p>0, a<ll;

- ¢) ¢>0, 10, a>1 or ¢<0, p<O0, a<l;
d) >0, p<0,a>1" ore<0, p>0, a<l.

Figure 2.3. Regions of instabilizability for a controllable
oscillatory system with two degrees of freedom

The inequalities (2.61), (2.63) combined with the condition of stability
of the closed system (D')-(L')

S (— ) ImL (iv))
o —u) 20

Re pj= — <0
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[see (2.58)] permit the following interpretation of the obtained regions
to be given.

Let us consider them successively in the order corresponding to increased
weight of the requirements on the characteristics of the control system:

The noncrosshatched region [system (D)] 1s stabilizable -— the stability
of the closed system is insured by satisfaction of uniform phase condi~
- tions III:

sin () <0, sinp(u) <0 ot sing (0) >0, sing(u)>0;

The crosshatched regions [system (D)] is nonstabilizable ~- in order to
insure stability of the closed system it is necessary to construct the
control system so that it will realize satisfaction of nonuniform require-
ments

sing(uy) <0, sinp(0p) >0 0 sin (i) >0, sin g(ug)<<0

on the phase characteristic of the control system (L);

The regions that are double crosshatched (insurance of stability of the
- closed system of a dynamically unstable object by a control system of the
adopted structure is impossible),

Along the rectilinear sections of the boundaries of the regions of
stabilizability, the system obviously is uncontrollable or unobservable.
It is easy to see that on variation of the parameters a, M, c the boundary
of the region of dynamic instability turns out to be the envelope of the
family of straight lines -- boundaries of the reglons of stabilizability.

The constructed regions will permit an estimate to be made of the structural
properties of the object (D) in the entire range of variation of any
characteristic parameter (most frequently selected as an independent
parameter T -- the time of movement).

Actually, for example, let us introduce the characteristic line I=r(7)
corresponding to the given object of control and given by the parametric
equation

pl:lal (), ;’2=|eg (T).
Let the parameter T vary in the interval [Tg, T1]. Then the position of the
- line I'=T'(1) with respect to the regiomsof stabi}izability [see Fig 2.3,

curves I, II)] gives information about the dynamic properties of the
investigated system for any values of t=t*,

Let us consider the situation illustrated in Fig 2.3 (curve I). The
dynamic system (D) passes successively through the segments of structural
instability, structural stability, again structural instability and
finally, dynamic instability on variation of T.
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For the given parameters of the control system, for example, for

sign {Im [L (io)]}=sign {Im [L (fw))]}=+1, (2. 65)

the system with ToST<T,& T4 <TSST1  1s unstable.

The values of the parameter T=Tx and T=Txx correspond to unobservability
(uncontrollability, respectively) of the initial system, for the line
r=r (1) intersects the corresponding straight lines (p) and (c).

If we select the parameters 81>0, B9>0 of the system 8o that the condition
of dynamic stability is satisfied

(1—aP4-4af;B, >0
_ and the condition of structural stability

{1+ op%Py— By —ap) (c4-Pre? — ac —afy) >0

in the entire interval t($1$T;, then the investigated system (D)-(L) will
be locally stable for all w4 }n the case of "coarse" adjustment (2.65)
of the control system (L) (Curve II in Fig 2.3).

In the general case the boundaries of the regions of structural instability
of the object (D) in the space of its characteristic parameters Vi, V,«:sVr
are given by the equation :

A [ (0o % (@] =0 (=1, 20000 M

_ the boundaries of the regions of characteristic dynamic instability, by the
equations

Aoy (¥, M@)=0 (=1, 2,.0., m, 1<),

where Ais are the principal diagonal minors of the matrix S=GK"1, and AD

are the Hurwitz determinants for the equation (2.88). The location 11n1l

F(t):{v, (W)yeeer v (¥}

with respect to the regions of stabilizability gives information about the
structural properties of the object of control with respect to the control
system (L) belonging to the given class.

From the presented arguments it follows that for solution of the problem
of phase stabilization of the object of control, its parameters must be -
selected so as to insure first of all the dynamic stability of the object
and then its structural stability. .
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In the specific cases it is also possible to introduce the appropriate
criterion of optimization, which is illustrated below by the investigated
example (see Chapter 4).

Direct Method of Investigation of the Stabilizability of the Object

- In many cases when analyzing the structural properties of the object of
control it is expedient to use a representation of the characteristic
equation of the closed system made up of the object and the control system
in the form

1L () 2D
1+L B21--0, . .
+L(p) 3 D (2.66)
N N T A o A TT o T
where W () PN R e o Iy :2: (2.67)

is the transmission function of the object of control.

In order to establish the fact of stabilizability (or unstabilizability)
of the object it is sufficient to calculate the zeros Ay and the omes uy
of the function W(p ) directly and check the condition of their
permutatability .

)‘1<P'I<"'<|"‘n—l<kn' ' (2.68)

The violation of the condition (2.68) for A=A, will denote nonstabilizability
of the object of control in the vicinity of the corresponding frequency
wz—i/Xk

The calculation of the roots of the equations

Qo (P))=aop™™+a;p"m=V 4. .. 425, =0; (2.69)
@, () =bop™ =D 6" A by =0 (2.70)

is conveniently reduced to transformation of the determinants

— P ay cees Qg
o | @n an—p? ... ay
0(p2)= Q3 Qg ces Oy 4
n ap .y —pl
by agy e @y
, by an—p? ... ay
0, (P%)= by ay, e Gy
b, Gz ooap—p?
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to the Frobenius form

]
)y — P° U Oy
- Y

where the index & assumes the values n and n-1 respectively.

As is known, the characteristic equation corresponding to the equation
¢(p2)=0 has the form

21 2(1—1) _
pr—apt T — . —ay=0.

The transformation of the determinants ®o(p2), Qk(pz) to the Frobenius
form can be realized, for example, by the Danilevskiy method, which is
easily subjected tc algorithmization. As the numerical execution on the
digital computer shows, the method is effective for high—order systems
(n~40), and, in particular, it requires a significantly smaller number of
operations than, for example, the Krylov method.

Frequency Criterion of Stabilizability of the Object of Control

Finally, let us consider the frequency interpretation of the conditions of
stabilizability of an object of comtrol.

For this purpose it is sufficient to investigate the form of the frequency
characteristic of the object of control in the vicinity of the ones of
the transmission function W(p2) of the object of control

p::igl, p;= igz.

We have the following approximate expression for the characteristic
equation of a closed system:

(2= A)o=A)_q

l—L(Mx(p——pI)(p—-ﬁz)

where the following is also denoted:
P=ioy; pr=ioy.

If we denote ) ] .
Apy==pi—pi; Ap=pa— 2,

for the increments of Ap; we obtain the following expressions:
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)

Ap;= - T % L(iQ H
. Pi (Pz'-.”l) ( l)
s e o
Apz__.M(pﬂ_@’_)_ x L (%)

(P2— 1)
or considering the expressions for the zeros p0 and the ones p*:
= — iy @1—=9)(2—a .
UERLESS I

= gy (B2 —a)(Q— ,
Ap,= “‘?‘__;‘ﬂ L (i2,).

From the.expressions for Apy, Apy we hgye
ReAp = —xA(Q,) &= (@ — ;*’ (9;" 2 sing(Q,);
2 — Q)
Redp,= —xA(9) &= (@~ ) = "*’(? =) sing(9y).
2 — 9

In the given case the condition (2.68) of alternation of zeros and ones
of the transmission function (2.67) has the form 01<Q,<0p<qy or
Ql<01<92<02-

Let us introduce the small parameter e into the system which characterizes
the presence of dissipative forces in order to study the form of the
frequency characteristic W(p) in the vicinity of the ones iQ3, if9.
Let us set . . ..

pi==0+iQ; pl=sp-io;

Pr=0y+iQy;  pr=pyt-ioy;

__(p - p?) (P - Pg)_ 1 + WIO (—Wu‘{'“Vm); (2' 71)

M Py e

where

W11= L k) V1= (p;—p(l]) (p;_pg) H
P=r (r=p)
W=t . (—r)(n— s

e (r2— 1)

Let us propose that the frequencies 01, Q, are different. Let us assume
=Pl (Q—Q)).

For simplicity let us also set 01=H1,  OguMg, which does not limit the
generality of the arguments. ’
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Let us define the form of the frequency characteristics of the system,
considering each of the terms in the formula (2.71) successively. It
" is easy to show that the function

____a+ib
7~ (a+ iv)

(a=const, b=const) realizes the mapping of the imaginary axis of the plane
(o, w) of the variable p into the circle of the plane (u, v) of the
complex variable W passing through the origin of the coordinates and given
by the equation

(o4 5 ) (o4 L)’=M. . (2.72)

20 4a2

‘

Figure 2.4. Phase-amplitude characteristics of the structurally
stable (a) and structurally unstable object of '
control (b)

Let us find the parame’.ers of the circles (2.72) for each of the functions

. A +1iB; _ A+ iBy
W/wwll: ;—p; ' WIOWIT"‘ p-—P; .

As a result we obtain

_ . A,v= __(a1—ay) (Ql—zn); A= (@2 — a1) (9 — a9) .

) Q— @ -9
: B=E1= )@=, p_(%—9)(2—a)
& Qz-—Ql ! 2 Qz-—-Ql *
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If we denote the slope angle of the diameter of the circle (2.72) to the
v axis by 8, the following expressions are correct

Q—c Qg-——cg
b 21— og BT
tg a) — Qs g% a — a2

Since by the condition |al<<|92—91|, the angle 6 is in all cases close to
/2. '

The phase-amplitude characteristics of the transmission function of the
object of control (D) corresponding to two terms in the formula (2.71)
are presented in Fig 2.4.

The phase-amplitude characteristics of the closed system (D)-(L) are the
same circles as in Fig 2.4 rotated by the angles ¢1 and ¢, respectively,
the radius of which is proportional to the amplification coefficient of
the regulator on the frequencies 3, 95.

In all cases the point (+1) is critical (in the sense of the Naiquist
criterion), and the stability of the system (D)-(L) corresponds to
encompassing the point (+1) by the circle gone around counterclockwise
(for wr), '

Therefore the structural stability of the object of control corresponds to
Fig 2.4, a: the point (+1) is encompassed -- when the control system

is switched on (L) —- by all the circuits gome around counterclockwise
for wre, and not encompassed by the circuits running clockwise.

In Fig 2.4, b we have cases of a structurally unstable object of control:
for phase lead (sin ¢7>0, i=1,2) or lag (sin ¢3<0C, i=1,2) of the control
system it is impossible to achieve satisfaction of the conditions of
stability of the closed system: at least one circuit gone around
counterclockwise for w*® does not encompass the critical point (+1) or,
on the contrary, the circuit gome . around clockwise encompasses the
point (+1) which also leads to instability of the closed system M)-(L).

2.3. Dynamic Instability as a Form of Nonstabilizability of the Object
of Control

General Reaarks
Let us make the assumption of natural dynamic instability of the object
- of control, and let us assume that the characteristic equation of the
open system |p2E-A|=O has roots of the type pj 2=totiw; p3’4=ip+iw,
which indicates instability characteristics of the system with
positional nonconservative relatioms.
What occurs in this case with the system on closure of the feedback circuit
by the control system of the type (L)? c
81
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The characteristic Equation of the closed system
x=Ax+bu, )
u=L(p)v; v=(g, X) - (L)

is representable in the form

L)@ (R))

— X IS A A SV , 2.73 i
1+§ +x(p) | 2.73)

Do (241

where »{p)is the analytical function determined by the pecdliarities of
the function L(p).

Let us use the resonance properties of the investigated oscillatory system
and investigate the equation (2.73) in the vicinity of the ones pj 2=iq+im,
retaining the corresponding terms in the expression (2.73). ’

We have

1+L(p) 2 pPoiita)—an | 2.74)

w2 pt— up— (a2 +u?)’

2 where a is a constant determining the effectiveness of the control inmput;
iy, 10, are the zeros of the transmission function of the object of
control which are assumed to be different.

Denoting 1 2

C(P)=~’2—L(P);; '

we obtain the equation

Pl P=a% g (2.75)

1-- QC(p) B p'Z pu— |'2wp — ((12 -t '-"2)

Then let us set
C (i) =L (o) exp [£2 (2}] = Q1 (w)-+ Qs (w)
and let us replace the variables p=u+i(w+v), so that p2=u2-(9-v)2+21u(m+v).

We obtain the equation (2.74) in the following form:

1 — 20 (iw) {H- 1[20 — (a1 +a)] A + [a2 — (2 — 61) (2 — @)]

R >

}-_—.o. (2.76)
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Transforming the equation (2.76) considering (2.75), we obtain the following
equation with complex coefficients:

F N)=(1—2Q, —2iQ;)»*+[—i2¢/Qy 4 2, Qo] A
— [2,Q1+ 12%,Qy+ 02 — 202Q, — i207Qp] =0, @.77)

where 1y =292 — (3, a5); *z=a2—-(f°—"1) (0 —ag).

For stability of the closed system in the investigated frequency band
obviously it is necessary and sufficient that

Re\, < 0; Rel<O0.

Let us investigate the polynomial (2.77) using the following theorem, which
is a generalization of the known Routh-Hurwitz criterion [19].

If the complex polynom{gl_ £(z) is given, for v131_.qh
S G2)=b2"+byz" 1 . 4 b, (@gzn ... +ay),

where the polynomials [(2)=aw2"+ .. +an; f2(2) =bez"+ ... 4 by are
mutually prime, then the number k of the roots of the polynomial f(z)
located in the right halfplane is defined by the formula

22y o Bgp—y
' .o bbby
k=V(1, Vm-.., vrm), v2n== P (2'78)
- 'O(lo .......
where p=1, 2,..., n; a,=05,=0for g>p,

In accordance with the conditions of the theorem let us compare the
polynomial

£ (0= — (1= 2Qy — 2iQ) V4 [ — 2,Qs + 20,Qa) —
—[20:Q + i20:Q, 402 — 207Q, — i2a7Qy),

from which we find the coefficients

@=—142Q; a;=24Q; == — 20,Q, — @24 20%Q;;
bo=—2Q;  bi=—24Qy b;=2xQ,—20%Q,.
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Setting n=2 in the formula (2.78), we obtain the comdition of stability
- of the polynomial £(A) in the form V(1, Yy, V4)=0 or V5>0, V4>0.

Calculating the determinants V9, V4, we find
Vo=x1; V= —4Q? (U-?’-?"I' x'{:)

As is obvious, V,=y4 =0, V,<0, if at least one of the variables xi, %2
is nonzero.

Thus, the conditions of stability of the closed system (D)-(L) are not
satisfled: the characteristic equation of the closed system in the presence
of the natural dynamic instability of the object of control has roots with
positive real part.

From the results of section 2.2 it follows :that if the object is structurally
unstable, its stabilization is theoretically impossible by "fine" adjust-
ment of the control system on each of the natural frequencies of the system
(in practice, this can far from always be realized). As is obvious, the
stabilization of a dynamically unstable object by the selection of the
control system parameters (L) is impossible. This fact indicates the
theoretical difference between the two investigated forms of nonstabiliza-
bility of the oscillatory object —- its natural and structural instability,
Therefore in addition to the criterion of stabilizability (2.54)-(2.55)

it is also desirable to have the criterion of dynamic stability of the
object of control as the most unfavorable form of its unstabilizability.

Sufficient Criterion of Dynamic Stability of an Object

Let us obtain a sufficient criterionof stability of a system (D) by using
the theory of Cauchy indexes. In equation (2.69) let us set p=iw and let
us consider the equations

@ (0?)=ag?™ — gdm=D{ L (—1)"a,,=0. (2.79)

It is obvious that if the equation (2.79) has prime real roots, the system
(D) is dynamically stzlle.

Thus, the sufficient rriLerion of dynamic stability of the object of
control appears to be possible to formulate as the criterion of realness
of the roots of the equation (2:79). Let us designate by
I+oo d-):)(m)
—C0 00(0))
the index of the Cauchy real rational function

R (u’):q);’(m) s
Do(w)  ag®™ — guudm=D
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Then the necessary and sufficient condition of realness and primeness
of the roots of the equation (2.79) assumes the form

/ [o°] 'ba(m)
— 00 &g ()

=21,

In order to calculate the index in the lefthand side, let us construct the
Sturm series:

J1(w)=q (0) = g?™ — gpo2m=D L | L q,

Sa(0)=0g(0)=bhg?™ ' — g™ e o Bogmery;

fa(@)==L0f;(0)— f1 (0)=cpm=D — cotim-DL . ;
o

4 a,
- Co=ag—-—°-bg: cz=a‘._._0..b4.
bo bo

The coefficients of the remaining polynomials are defined analogously
B , Fa©hons frlo) -

Let us note that, as follows from general theory, k=2mt+l, that 1is, the
Sturm series is complete.

Let us compile the Routh table

Qg @4, dz...
bor byr by... (2.80)
€ Cpr Cgenn I

On the basis of the Sturm theorem

10 %) (o) v (o0)=2m. (2.81)
— O3 &y (w)
In the given case

V(0o)=V (aq, by core..)V(—c0)=V (a5, —bpy...) (2. 82)
where ag, by, ¢g... are the coefficients of the Routh system (2:80).
From the expression (2.82) it follows that
V (—o0)+-V (c0)=2m. . (2.83)

From equalities (2.81), (2.83) we find

V(@ by Cper)=0. . (2.84)
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By what has been proved, the criterion (2.84) is the necessary and
sufficient condition of the absence of multiple roots of the equation
(2.79) and at the same time the sufficient criterion of stability of the
initial system.

Let us express the criterion found directly in terms of the coefficients
of the polynomial Qo(pz). Together with equations (2.79) let us consider
the auxiliary equations

2(2)=1Do (p)+ 1200 () + 1300 (p)==0, (2.85)
where 1, >0(=1,23)

The Hurwitz matrix for the equation (2.85) using the previously notation
for the coefficients of the polynomials ¢0 and ¢'g has the form
_ . nzbo ﬂgbz “ee
H= Mo+ M360 Mag+n3b;...
_ _ 0 2b,

and, obviously, is equivalent to the Routh matrix
by by by...

0 ¢ 0c3... .
- R= . 2. 86
R 0 0 dy... (2.86)

The equivalence of the matrices H and R will permit us to express all of
the elements R (that is, the elements of the Routh system) in terms of
the minors of the Hurwitz matrix H and, consequently, in terms of the
coefficientes of the given polynomial,

Let us designate: A,=bo; As=0Co; Az=bscodo; . so that

b, 5B,
bo="1; Co=75’ do= N

Thus, the sufficient :r’terion of dynamic stability (2.84) will assume the
form ' .

A .
|4 (ao, 4y, A—f, . ﬂ"i_.‘ =0 (2.87)

.
dom—1/

or oA >0; As>0; aoAs>0, veny o820 >0, where Ay (i=1,2,..., 2m) are the
] Hurwitz determinants for the equation (2.85). u

We obtain the following result. In order that the object of control with
characteristic equation (2.79) be dynamically stable, it is sufficient
that the polynomial (2.35) be Hurwitz.
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Setting ny=0; u=n2/n1 in equation (2.85), we find
2(p)=0 ()4 p0o(pY)=0. (2.88)

In this form the auxiliary equation (2,.85) is also used later.

Figure 2.5. Root hodographs for the equation ¢(u, p)=0 for
unstable (a) and stable object of control (b)

Example. The prgblem of the mutual arrangement of the roots of the
polynomials ¢,(p“) and ¢0(p2)+u¢0'(p2) for the various values of the
parameter u is of interrst. Let us 1llustrate the typical situation in
the example of the gsyeiem of section 2,2 including two bound oscillators:

g1+ 9lq1 + olpygp = 0;
g2+ 93q2 + alfaq == 0.

Let us write the characteristic equation of the system
By (2) = pA -+ (5] + o) p2 + a3 (1 — i) = O
and the corresponding auxiliary equation (2.88)
PUP) = Pt o+ dppd + (o7 + o) 2+ up (o] + o) + oQe3 (1 - Bi) = 0. (2.89)
Let us construct the root hodographs for the equation (2.89), éonsidering
v the parameter (Fig 2.5). The solid lines corresponding to variation of

the parameter p within the limits of (0, =); the dotted lines;:for (»<u<0).

The situation of Fig 2.5, a corresponds to the case of stability of th
initial system: :

P = & iwy; paa= % ivg
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the situation in Fig 2.5, b corresponds to the case of instability:

pis= @ tiv (i=1—4).
The root hodographs (see Fig 2.5) illustrate, as is obvious, not only the
correspondence of the roots of the equations ¢0(p2)=0, ¢(p)=0, but also
their mutual arrangement, which is important for a number of practical
problems.

In addition, Fig 2.5 shows that the condition of positiveness of the
parameter p is not significant. Setting u<0 and repeating the arguments
"used above, we find that the stability criterion of the object of control

can be represented in the form

V(ac, bo, [ D= 2m.

Thus, for analysis of the dynamic stability of the system using the
sufficient criterion (2.87) it is necessary:

To calculate the coefficients of the characteristic polynomial
' o (p)=0;
To write the auxiliary equation
& (p)= 0o () +403(P)=0i
To write the Hurwitz matrix H for the equation ¢(p)=0;

To check the satisfaction of one of two conditions:

A T A )
V 0y Al _2 gesey ___"’m__ =Ol H 2-
(co B G2ons pm)=0, g5 #>0 (2.90)
V(ao. A, 22 -‘32-"'—)=2m.1f b <O0. (2.91)
Ay Aym—1

Other known stability criteris, in particular, the Lienard-Shipard and
Mikhaylov criteria, in pirticular, can also be applied to the investigation
of the equation ¢(p)=0. The expediency of using one criterion or another
is obviously dicated !y -he specific situation.

2.4. Investigation of .ie Dynamic Instability of an Object of Control
Canonical Form of the Oscillation Equation

Without limiting the gen:rality let us assume that the characteristic
equation : .

0y p2)=a0p""+@yp "V 4.+ 2 ==0
has one group of roots o the type py=tot+iw, where a30.
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Together with equation ¢0(p2)

O (N)=ad" a2 + ...+ 3y =0

=0.let us also consider the equation

with respect to A=p2, the roots of which are the eigenvalues of the matrix A:

lpgt_'l.!-iig; )\3= —73; very Xm=—-x,2,,, (2'92)

where, using the former notation
p,=(17——m7,'9.=20.0!.
Let us élso assume that among the roots -
2 .
—x5 (j=3,4,..., m)

there are no multiple roots., It is natural to isolate the following
cases: 1) -Q#0 (the case of different eigenvalues of the matrix A);
2) -0=0, u#0 (the case of multiple eigenvalues).

Let :;=B'§ be the canonical form of the system where B is a given (real)
matrix, for example: . N
p —2 0...0
" e , 0...0
B=l 0 0 —152,...0

Let T be the matrix of the desired transformation: T=| ltij ] |1n.

By definition we have
T-1AT=B (2.93)

or, multiplying the expressions (2.93) from the left by the matrix T and
grouping terms, we obtain

AT —TB=0. (2./9'4)
Thus, the matrix T, if it exists, satisfies the matrix eduation (2.94).

Let us introduce the vedtor Z of dimensionality n?:

z={2y.00y Zm)={fj1s.. 0y !:m.- bavees Byre v oy Enh ,(2.95)
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where the components zj and tij are related by the expression
by=2m-1y4j (i J=1,..., m). (2. 96)
Transforming equation (2.94), we obtain
AT =(A X Ez; TB=(E X B')Z, (2.97)
where AXE, ExB are the matrices [mZXmZ] which are the Kronecker (or tensor)

product of the matrices A, E and E, B', respectively, and having the
following structure:

au...o am...o . e s al,,,...O
d ..:L;n(j ..:a:m LI 0 ...aIm
ag...0 [a5...0 o+ .0
AxE=|- .. |- .. A (2.98)
0..-@01 0 vl v 0 .. Qom
2p1-+-0 |@m2...0 U« + -0
JO SR 20\ (| IO 2% 0 ..‘.a;,,,,,
B'...0
ExB=|- -l - 2.99)
0...8

Considering expressions (2.95)-(2.99), it is possible to represent the
equation in the following equivalent form: '

(Ax E—E x:B') 2=0, (2. 100)
where z is the vector dcfined by the expression (2.95).
Thus, the problem of constructing the desired transformation reduces to

- investigation of the linear uniform system (2.100). It is known that the
eigenvalues of the matrix

J=AXE—EXB,

which we shall denote by p(j) (j=1,2,... ,mz) are related to the eigenvalues
of the matrices A and B (w\{ich, by definition, coincide) by the
expression
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PP =p—ps, (2. 101)

where the right side contains the differences of the roots with arbitrary
combinations of indexes k, 2=1,2,...,m.

Let us return to the investigation of the isolated cases. Let
Mg=p + IQ; A= —xi(k=3, 4,..., m).

Considering all possible combinations of the type of (2.101) of eigenvalues
of the matrix A, we find that zero is the m-tuple. eigenvalue of the

matrix J. The rank of the matrix J is equal to m?-m so that there are

m linearly independent vectors and the matrix T respectively.

Let A=0 be the double eigenvalue of the matrix A. In the given case zero
is the (mt+2)-tuple eigenvalue of the matrix J. The rank of the matrix J
is equal to m“-m-2. Thus, the mattix T also can be constructed from the
set of m linearly independent vectors.

B The presented arguments give, as is bbvious, the method of reducing the
initial matrix A to the canonical matrix B, which from the point of view
of the problems investigated later it is expedient to take in the form

anauO ..... 0

. a;’,a”O v e 0

B=l T —| (2. 102)
Dofo. ...

selecting the coefficients ajj, a19, a1, a9 so that the eigenvalues'of
the matrix . i

2 ay,
@21 @py

A=

will be s

Actually, when selecting the matrix B in the form (2.102) the transformation
%=TY¥ constructed by the above-discussed algorithm does not separate the
physically connected partial systems (im the given case corresponding to

the indexes 1 and 2), which retains the poasibility cf analysis of the

parts of their interaction for different chiracteristic parameters of the
object (D). [ N

From this point of view the Jordanian form, just as certain other

canonical forms (Danilevskiy, triangular) have low suitability.
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Fictitious Controllable System. Simulation of Dynamic Instability

From the results obtained in section 2.3 it follows that the analysis of
the dynamic stability reduces to investigation of the equation

Do (p)--pPo(p) =0

or, what amounts to the same thing, the investigation of the mutual arrange-
ment of the zeros and ones of the transmission function

W (p)=pt. (2.103)
Let us formulate the following problem.
Problem 2.3. Let us construct the linear dynamic system
B . ;=f'2+f¢'u, u=hz
such that:

a) The transmission function of the object W (p)= will coincide with

the required

:l,m

¥y(p)
& ()

W (p)=p

b) The characteristic equation of the closed system made up of the object
and the control system have the form

®y (P2)-+ 805 (p)=0. (2. 104)

Let us denote
- @y (p)=p*n+tarp*™ =t L a D+ gy (2. 105)
Oy {p)=bop* 1+ b,p*" 34 ...+ boyym-1)- (2. 106)

The coefficients of the polynzmials (2.105)-(2.106) with odd indexes are
equal to zero:

ay=a_ = ..=a2,,,_1=0; bl=b3="'=b2m—-l=o' (2- 107
where

’)21=2(m—'j)a21, j=1, 2,..., m. (2. 108)

- Let us assume that the equation (2.104) for pu=0 has no multiple roots.
Then on the basis of the known properties of the controlled systems the
transmission function

- bo‘Pz"'"l + 62D A by g bamct (9, 109)
WP =t o Ty "D &+ tam (
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corresponds to a real linear automomous system,entirely controllable
and entirely observable. Such a system is the only one with accuracy to
linear equivalence. '

Thus, the problem reduces to finding the elements of the matrices F, B, h'
in some appropriately seiected base.

As the first stép let us find the canonical representation of the matrices
F, B corresponding to the given transmission function W.

Let us consider the differential equation
x2m L gpx2n=DIL g bl
Fbyuttm=3 L byt (2.110)

and let us carry out the substitution
z{f)=x(t)
2, (f)=x (£) ~ B (£);
2z (O)=x(O)— P (N —Boe (8 - : (2.111)

......
.................

2oy ()= 1281 —Byas (P =01 — . — B _yu (8],

where B> ’82,. ++s Bypp-] are constants which must be found.

Setting =2 s

Z (=X )= N u®B_ (=1, 2,..., 2m),  (2.112)
k=0 .

we find the differential equation which is satisfied by the function
z4(t).

From expression (2.112), considering the equatioms (2.111), it follows
that

-2 '
2, (()=x® () — X, w0 (B pm1=Z 101 () B0 (),

k=0

for
-1

()= ()= F 4 (o= ()~ () — 4 Oy
= " 2. 113)

Differenfiating equation (2.113) for i-2m, we obtain

. 2m—1
2 (()=x0m (()— 3 4P,
. km1
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and substituting the expression x(2m) (t) from equation (2.110), we find

2m—1

o ()= — N g0 () b ()

i=0

2(m—1)
43 iyt (O bat ()

B=1 :

From the expression (2,113) it follows that .
2m--1 2m—1

i} 2m—1
‘zo Ao X D (E)= % Ui (£ ,_20 Aoy X

2m--1

T =t
X [2 lt(k) (t) X ﬁ,_k] +u \t) 2 a2n|—lpl'
k=1 .

=0
Thus, S 2(m-1)

Zmll)=— B G121 () bouPm=
‘-zo (0 Yo" H"l( I+ ol (t)+ kzl b?m—k—l+
2m—1 2m~1

F byt (£)— 2 a™® (£) By — zazm—l X

k=1 =0

-1 2m~1
X I:E u® (¢) 3[—1] —u(t) z AyyiBye

Considering that k=1 i=0

2m—1 2m—1 2m—k—1

1~
— o ® ()8, = — C ,
zaz 1.2._‘“ (6)Bi-s ‘z‘“( ) (¢) 2 Pom—t—a

i=0 [=1

we obtain the following expression

. Im—1 m—1 )
2y ()= —. z.ab;—lzl-l-l O+ 2 u® () X

B im0 A=1

2m—Rk—1 2m—1

Xbm——'—pm—— m—i— )10, - ’
el g.az ;;.ﬁ;‘%—u()[z.,_; ‘_zoa,,.__,pf]. @ 114)

It is necessary to have the constant By 80 that the right side of the

equation (2.114) will no. depend on the arbitrary function z(t). For this
purpose it is sufficieat .o set

2m—t—1 . :
bimosr=bemt— D, Btimoioa (=1, Zery 2m—1).

=1

Let us denote C Tame

- bom— 2 Bty =P-

i=1

Then the equation for ézm(t) can be represented in the form
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2m—1

z(f)=— E Bom—iZam—1 () Zante (£).

I=0

In order to determine the constant Bi, we have the following system of
equations: bo_pl_.

by —B; —a,6,=0;
ot —Bom — 2,85y —afmg— ... =gy =0.

Since on the basis of (2.107) all of the coefficients of the system with
odd indexes are equal to zero, B24=0 (j=1,2,...,m). The remaining
coefficients BZj-l beginning with B1» are calculated without difficul*y
by successive substitutions.

(2. 115)

In particular,

- Bl=2’n; '93= '-2‘12; p5=243_4a4; ... . and so0 on.

The system (2.115) can be written in vector form:

- b=DF,
’ where LT
; 1 0 0 . 0
a, 1 0 . 0
D=[|% & 1 - Of
g a, (727 . . 0 !
Q2om A3 (m—1) 02 (m—2) 1

by B
by ' 85
by Bs
P= =l
bs * B,
b2 (m—1 ) om—1

It can be shown by the classical methods, for example, inversion of the
matrix of coefficients D(ID]#O)
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Thus, we have the following canonical representation of the pair of
matrices F, -é for the investigated problem:

z(O)=Fz+bu; © (@.116)
a=h'z, '
where
0 1 0 , 00 2m
0 0 i 00 0
0o 0 0 00 —2ay
0 0 0 ... 01 .
— Qo 0 —a, (m=1) =+ + —as 0 0

h'={h1, - ’th} is an arbitrary vector.

Let us use the arbitrariness in the selection of the vector © to formulate
the required characteristic equation (2.104) of the closed system.

On the hasis of the absence of multiple roots of the equation $0=0 the
3  vector h exists. Let us show that in order that the characteristic equa-
' tion of the closed system have the form (2.104), it is necessary and
sufficient that .

#=(—1, 0, C,..., 0).

Sufficiency. Let F={f1,...,fn}; then gh'=(-B, 0,...,0); and, consequently,
the system (2.116) assumes the form :

) p=(F+Bh) 2.
Its characteristic polynomial is
IF+B8h' ~Epl=0
and can be written as rollows:

- (f1+8f2..., f)—Epl=0. .17

Expanding the determinant (2.117) with respect to the first column, we
obtain the required expression for the characteristic polynomial:

P — Epl+(@fas.-es S — ERI=0r
or for the selected B: L
By () + 1B (A =00
Q.E.D.
96
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Necessity. Let the vector h be selected so that

IF + Bh* — Ep|=: 0o(p) +uy(p). @.118)

Since the pair of matrices F, B is a controlled pair, the base exists:

1= FUNEL apF "9 4 4 ay, \FE;

G=F DG4 aF "G4t ay ) FE (2.119)
N e
eym—1 = Fg; 2.119)
B ?2”! =4H,

where —g'=-§, with respect to which the system (2.116) has the form §=F;+'§,,;

. 0 0 T

01
| LR P B P (2.120) _
—am0 —ay, y 0 i

u=—li‘_7f.

The corrgsponding transformation is given by the matrix P made up of the
vectors e§ (j=1,2,...,2m):

|
nNi

= P4§.
Thus, _
IT" =-f;'P; ﬂ:'= P"—a..
It'is obvious that the vector h' is found uniquely from the condition

B = (0 Sgmegs.e, 0, — 8, 0, —8p).

Consequently, t_l;e vector B' is also found uniquely. The preceding analysis
- indicates that h'=(-1,0,...,0).

This statement is proved. -

Thus, the solution of the above-stated problem used the following dynamic

. systeuw:
“=F—> - :
e=Fatiu (2. 121)
. u=hn'z
01 0 0 0 2m| —1
0 0 1 0 0 0 0 _
F=| - e B P B
- _aﬁm 0 ) "'aj‘Z(m-l) 0I 0 0 , 0
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The system (2.121) describes the movement of some fictitious closed system
including the given object with ome input u(t) and one output Z(t) with
rigid feedback.

= Known methods of analyzing linear systems, including the method of analyzing
the structural stability investigated above, can be applied to the system
(2.121). In the latter case it is sufficient to investigate the equation

@ ()
2P o,
)

where the role of the "controlling" polynomial ¢y is played by the polynomial
1

@O .

In conclusion, let us find the matrix of the transformation of the initial

system to the form (2.121). Let the initial system be given in the form

x=Ax}bu,
where A is the matrix of dimensionality (2mX2m) characterizing the object
of control; ¥ is a vector such that the pair {A, B} is controllable.

Thus, two pairs of matrices {A, 3}, {F,E}, are given which correspond to
the same object of control, but described in different bases. It is
required that the matrix of the transition T be defined in explicit form.

The transformation T causes conversion of the matrices described by the
formulas

P=Tb; F=TAT-\. , (2.122)
Considering §=Tg we have:

FB=TAT-'TH=TAF,

FR=TAT-\T Ab=T A%;

................

Fln-03"=T AT-1T An-2p=T Atn-15.
Thus,

-

® FB,..., Fo-U3=T (B, AB,..., As-13).

- By assumption, the systeus (2.121), (2.122) are controllable. Consequently,
the quadratic matrices

QF=C€’ F_El-“v F("“”?.); Qp=($‘ AE:.-., A(”_l)ﬁj
i are not degenerate, and the inverse matrix exists. Q;'=(3, AB,.... An=Dg-1,

Thus, we arrive at the following results. The transformation matrix
{A, b} = {Ff) 1s defined by the formula

[ =

G Finns FO-T)(b, ABineer A
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- Example. Let the oscillatory system including two oscillators be described
- by the equation

J'q 0 I 00 X1

K =1 0 -8 0 i, @.123)
X3 -0 0 01 X3
x| ||—Be 0 —c 0 X4
where =g =it n=q n=2;
o1 4]
a=o§/a§.

In the given case
- @y (p?) = pA+ @2P? + G4
where
ap=1+4¢; ag=a(l —d).

The canonical representation of the system (2.123) has the form

él 0 1 0 0 21 4
Hl_foo vopral b 0 a2
23 0 0 0 1|2 —2a; ,
2 —ay 0 —ag Ol 2 0
u=7l"_2‘; 7:= ('— ]1 0' 0:!.0)'
Let us find the transition matrix T. We have
- 1
01 0 -1 01 0 —~—
foa
10 —1 0 10 —--
Q= D Q= 5211_ s
00 0 —po 00 0 ——
paa
00 —ga O 00 -~
. Bout
2 0 —ay 0
Q 0 —a 0 dz _— 2{14
- B — as 0 a%—- 2a, 0

0 a§—2, 0 3a0—a}
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Thus,
. 2 a
. 0 2 0 [___ L8
; Bz fao
o 0 @ 2ﬂ;é] 0
- r : . Bau B
- - 0 o [“’ + 434’23‘] i
— a; . —_—
2 foa Bax
2 . 3
a5—2a4 3aa4y—a
2 3 4 204 — B3
_ - 0 — — 0
a2 l o e ]

- The desired transformation has the form
Z=T%,
where T is the matrix.

The canonical system corresponds to the transmission function

2p3 4 p(1 4+ 0)
P42l +a)+ (2 —apifa)

and the characteristic equation of the closed system

W (p)=2s

(2.125)

®(p) =i+ 403+ (1 4 a) ;}2 +'2,L(1 + @) 4 (e —ofi) = 0.

Thus, the dynamic instability criterion of the system (2.123) is expressed
as the condition of alternation of zeros and omnes of the transmission
function W(p2). The fictitious controlled system in the form of (2.121)
can be used to simulate the dynamic instability of the system (D), that is, )
to estimate the effect on the stability of the various factors, primarily
the parameters of the object of control itself.

In this chapter a study is made of the linear oscillatory systems which are
objects of control with one input. Among all the systems of this class the
stabilized systems are isolated characterized by the ordered arrangement

of the zeros and onmes =i the transmission funmction of the object of control

W :
® MBI <o oy € Age

The condition of permutatdbility of the zeros Ak and the omes ui is also
taken as the definition of stabilizability of the object of control (D).

- Formally, the stabilizability criterion ié_ obtained as follows. For the

oscillatory system 4 . - o :
x=Ar+bu, v=¢g'x (@)

the controllability and observability matrices K and G are calculated,
respectively: i
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- ' K=I|F, AT,..., A" F ) G =1E’, 4G ..., (A")E").

The matrix
S == GK~V == |lsylIf,
as*;s+demonstrated, is symmetric and, consequently, is a quadratic form
(sx, x).
The criterion of positive (negative) determinacy of the form (Si, §)
is the chain of inequalities

. V(1, A5,..., 8)=0 Presz, >0 ®

or

V(1, Af,..., &) =ngor. (S, <0, %))

- which also serves as the criterion of stabilizability of the object of
_control (a), in other words, the criterion of "phase" stabilization of the
object of control (D), equipped with the control system (L) of given
structure. ’
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CHAPTER 3. STABILIZABILITY OF SPACE VEHICLES
3.1. Mathematical Models of Space Vehicles (Movement in the Active Segment)
General Characteristic of the Object of Control

Let us consider in general features the structural peculiarities of flight
vehicles with liquid-propulsion rocket engines as objects of control by
[35, 56]. Figures 3.1 and 3.2 show two different flight vehicles: the
booster rocket for space vehicles (Fig 3.1 —- "Saturn-5") and the space

- vehicle itself (Fig 3.2) designed for operations in open space. The fuel

reserves are required for maneuvers en route to the destination planet or

in the satellite orbit. .The control of the flight vehicle with respect to

the center of masses is realized by creating controlling moments as is

) obvious from Fig. 31, by deflection of the peripheral sustainer engines

- (the first and second stages -- Fig 3.1, a) or deflection in the two

E stabilization planes of the control engine and antisymmetric deflection
of the special control engines for creating a heeling moment (third stage,
Fig 3.1, b). The analogous control systems are also characteristic of
space vehicles.

As. is obvious, an important characteristic feature of the composite flight
vehicle system is the presence of supporting (or suspension) fuel tanks
executed in the form of thin-walled shells. The lower compartment, connected
through the supporting feet anl the intertank compartments which take sig-
nificant compressive loads are usually more powerful structures reinforced
by developed supportiug framing.

The forces from the sustainer engines usually are transmitted to the hull
through a quite rigid girder structure supported on a ring which plays the
role of a reinforced frame member. The fuel mains rumning to each liquid-
propellant rocket engine begin near the pole of the corresponding bottom,
and the end with entry into the pump for the oxidizing engine or the
combustible fuel component. At the ends of the fuel lines there are bellows
which unload the walls of the lines from additional loads:comnected with
the deformations of the hull and their natural curvature defcrmatioms.
The enumerated facts have important significance when selecting an

~ efficient dynamic hull system.
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Figure 3.1. Standard composite Figure 3.2. Standard composite
booster rocket system of space space vehicle systems with two fuel
vehicles and artificial earth tanks

satellites

The nature of movement of the investigated objects in the active segment

of flight has no less important significance for the selection of the
system. Figures 3.3 and 3.4 show examples of two characteristic types of
active segments: acceleration from artificial earth satellite orbit and
landing on a planet without an atmosphere. The movement in the active
segment can be represented in the form of programmed movement with
sufficiently smoothly varying parameters on which additional movement is
proposed characterized by "small" deviations of the corresponding parameters
from their programmed values. As a result, independently of the method of

assigning the program the true movement differs little from the program
movement.
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Figure 3.3. Active segment of the flight of a space vehicle:
acceleration from artificial earth satellite orbit

Figure 3.4. Active segment of the flight of a space vehicle:
landing on the destination planet
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However, this situation is complicated by the fact that if in the program

- movement the hull of the space vehicle can be interpreted as a rigid
solid state of variable mass and sometimes simply as a particle (of variable
mass), then in the disturbed movement (usually having an oscillatory
nature) it is necessary to take into account the mobility of the fuel in
the tanks and the lines and also the elasticity of the structural elements
of the hull. This generates problems comnected with the mathematical
description of the hull as an object of control, which, as 1s obvious, is
a complex deformed system.

The role of the control system is usually played either by the automatic
stabilization system (movement in the yawing, pitch, heel channels), or

a liquid-fuel rocket engine (movement in the direction of the longitudinal
axis of the hull of the space vehicle). ’

Let us note that the completeness of the mathematical model of the space
vehicle must correspond to the level of development of the object (the
drawings or, for example, the final deteriination of the parameters of the
control system. It is clear that when selecting the model it is necessary
to take into account all the factors which play a significant role in the
given specific problem and at the same time do not overload the calculated
model with various details making it unjustifiably complicated.

The level of complexity of the problem can be demonstrated in the following
example. Let us assume that it is necessary to investigate disturbed motion
- of the booster stage of a space vehicle having four fuel components in the
- yawing or pitch plane. Let us take into account one degree of freedom in
the 1iquid in each of the four tanks, two degrees of freedom of the rocket
as a solid state, the first two forms of elastic vibrations of the hull and
also one degree of freedom of the deflected sustainer engine.

All of this leads to an 18th-order system of differential equations (nine
degrees of freedom) not taking into account the order of the control
operator, the effective investigation of which is far from elementary
(even in numerical form).

At the present time the development of an adequate mathematical model of
the planned objects with liquid-propellant rocket engines is one of the
central problems in the overall problem of insuring their dynamic stability.

This problem still does not permit complete formalizationm and requires the
heuristic approach. The guiding idea here is usually the investigation

of the frequency spectrum of the space vehicle as the object of control
and comparison of it with the pass band of the automatic stabilization
system and the engine, closing the system. .

In Fig 3.5 as an example we have the frequency spectra of all three stages
of the "Saturn-5" booster rocket falling in the range from 0 to 15 hertaz.
This range corresponds to the pass band of the automatic stabilization
system and the liquid-fuel rocket engine and must be represented by the
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corresponding oscillatory elements in the dynamic system. If the filter-
ing properties of the automatic stabilization system and the liquid-fuel
rocket engine as control systems are such that on a frequency of f>fpay

(in the given case fygy=15 hertz) the system in practice opens, then this
insures adequateness of the simplified dynamic system of the object when
analyzing the stability of the closed system made up of the object and

the control system. The choice of one system or another is determined by

the goal of the investigation,
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Figure 3.5. Standard low-frequency spectrum of the frequencies
: of the booster rocket ("Saturn-5"):

a -— first stage; b -- second stage; Cc -- third stage;
1 -— rocket as a rigid solid state with automatic stabilization
system in the yawing (pitch) plane; II -- rocket as a rigid solid
state with autowrtic stabilization system in the heel plane;
1II -- fuel comnunents in the tanks of the separating section
(first tone); IV -- hull (1, 2, 3 -- transverse oscillations;
3, 4 -— tone nurker); V —— sustainer engine; VI -—— hull, torsional
vibrations (1,2,3 -— tone numbers); VII -- 1iquid in the oxidizing
agent fuel line; VIII -- hull, longitudinal vibrations 1,2,3,4 —
tone numbers).

Key:

1. hertz
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For analysis of the static controllability reserves it is possible (in the
preliminary step) to limit ourselves to a model of an absolutely rigid
solid state.

When selecting the characteristics of the devices which limit the mobility
of the fuel in the tanks, this is insufficient, and it is necessary to
consider the wave movements on the free surface of the fuel as a source

of disturbing moments for the space vehicle as a whole. The choice of
efficient placement of the sensors of the space vehicle stabilization
system usually is made considering the elasticity of its hull,

Thus, on the modern level of development of rocket engineering the sphere
of applicability of the hypothesis of "hardening" of the liquid or
"absolute rigidity" of the hull has a limited nature. When investigating:
the dynamic stability of the rocket fully, usually the mentioned factors
are taken into account.

One of the important peculiarities of the investigated class of objects
is comparative smallness of the dissipative forces during oscillations of
the fuel in the compartments and the elastic vibrations of the hull. The
fact that the work of these forces is small for the characteristic period
permits calculation of the corresponding frequencies and forms of the
vibrations without considering damping.

Finally, as for variability of physical characteristics of the space
vehicle, by the statement, it is related to the consumption of the fuel

in the active segment and in comparison with the characteristic oscillation
period (T~0.1 to 1.0 seconds) it is obviously small.

Summing up what has been discussed, it is possible to conclude that with
respect to the general characteristics, a space vehicle as an object of
control satisfies the hypotheses used when discussing the theory of
stabilizability in the preceding chapter.

Control Systems: Automatic Stabilization System and Liquid-Propellant
Rocket Engines

The input information for the automatic stabilization system is mismatch
of the program and the realized values of the generalized coordinates of
the space vehicle, and for the liquid-propellant rocket engine, variation
of the pressures at the imput to the pump for the oxidizing agent and the
combustible fuel component, and the output information is the deviatioms
of the controlling elements or variation of the thrust, respectively.

The automatic stabilization system and the liquid-propellant rocket

engine are designed so that under test bench conditions they are dynamically
stable. The spectra of the corresponding frequencies do not intersect

with the spectrum of the natural frequencies of the object of control

(to avoid undesirable resonances).
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The actual frequency-amplitude and frequency-phase characteristics of the
automatic stabilization system and the liquid-propellant rocket engine,
being quite smooth, have the properties that the oscillation frequencies
of the fuel and other vibrations of the hull on closure by the control
system vary little (the frequency-amplitude characteristic of the control
system is limited by the corresponding constant as the upper bound) .

Fig 3.6 shows the functional diagrams of the closed systems made up of the
object of control -- the automatic stabilization system (movement in the
yawing plane) and the object of control — the liquid-propellant rocket
engine (movement in the directiomn of the longitudinal axis).

D) o e o

| ossenm - X gdsenim ~
peeynupolands| 3 QD » peeynupobaus, Z

- g ) _.___—V?

(2)

a b

Figure 3.6. Functional diagrams of the closed system made up -
of the object and the control system:
a -- when moving in the yawing plane; b —- when moving in the
direction of the longitudinal axis
Key:

1. object of control

2. automatic stabilization system

3. liquid-propellant rocket engine

The angular stabilization systems in the pitch plane (UST), the yawing
plane (USR), and the heeling plane (USK) insure closeness of the true
angular position of the hull :o the program position, the normal stabiliza-
tion system (NS) and the lateral stabilization system (BS), closeness of
the true movement of ti= center of masses (metacenter) to the programmed
movement. Finally, the liquid-propellant rocket engine does not interfere
with the stability of the program movement in the direction of the longi-
tudinal axis in the casa of stability of the closed system.

The superscript "+" in Fig 3.6 corresponds to the input signal, the super-
seript "-" corresponds to the output signal.

The automatic stabilization system and the engine as control systems can
be described by the following equations:
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8o 8o=L1 (89 L3 (n0);
=Ly (§")— L2 (5°);

3= L; (qﬂ), 3.2

8e=L,(SH+ Ly(S2), G2

3.1)

where L_(n=1,2), Ln' (n=1,2,3) are nonlinear operators permitting lineariza-
tion in the required frequency range; &,=AP/P* is the increment in the
thrust of the sustainer engine reduced to the normal thrust at the given
altitude; sn°=(P/P*)n is the pressure increment at the input through the
pump for the n-th component of the fuel reduced to the static pressure of
the same componment; ®° % ¢ 1% ¢ are the angular and linear mismatches
between the true and programmed position of the hull at the point x0 of
placement of the sensors of the UST, USR, USK, NS, and BS systems. The
asterisk corresponds to the program value of the parameter.

The simplest linearized equations (3.1) have the form:

¢ (B0 +88)+ 1 (851 B8) + 8 + Bo=a0804- 2,80+ bynO+ 6,17 (3.3)
Caby+ cBy=agl + a0 — bk "bLY; (3.4)
esdyte18p 1 8p=doe® +d 1. (3.9)
In the frequency range corresponding to the first tone of the vibrafions
of the liquid in the tanks and the first two to three tones of the trans-
verse elastic vibrations of the hull, the NS and BS systems in practice

have no influence on the stability of the system (the spectra of the men-
tioned frequencies are separated).

Then, setting L2'=0, we find that all the equations of (3.1) have identical
structure and, for example, the equation corresponding to the yawing plane
can be written in the form

8=L({), . 3.6

omitting the nonessential indexes. The operator L in the simplest case is
a piecewise linear operator so that intead of the equation (3.4), we
obtain

cdtedto=agotap. (3.7)

Fig 3.7 shows theasgandard frequency~amplitude and frequench-phase
characteristics (6/(0) corresponding to the automatic stabilization system
described by the equation (3.7) for the following values of the parameters:

ay=2,1; a;=1,26; ¢,=0,00976; ¢;=0,126.
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Figure 3.7. Standard frequency-amplitude and frequency-phase
characteristics of the automatic angular
stabilization system

The simplest linearized equations describing the dynamics of the liquid-
propellant rocket engine of the open system have the form

i+ =aysi+ads
gt ?2422‘1&253’*’ agds  (3:8)
8,4 Bd,==ang1+ g2

where qp=(u/u*), are the increments of the mass consumption of the fuel
components per second reduced to the corresponding rated values of the
engine (n=1,2).

Usually the frequencies of the natural vibrations of the liquid in the
combustible fuel component and oxidizing agent lines differ sharply as a
result of the difference in length of these lines. Therefore the relation
between the fluctuations of the pressures p; and pj is relatively weak.
This provides the basis in equations (3.8) %or obtaining either 31°=0

or sy =0 depending on the situation.

After excluding q, the equation (1.8) acquires the form
d=L,(sh) (n=1,2), . (3.9)

where L, is in the simplest case also a piecewise linear operator

an%+0|né+a=a'0ns?l (ﬂ= 1’2)' (3' 10)
Here
Con = 1 . — Bz + Ba s Goy= 8an .
o Babs — Gon@ns 1 B a3 — B3t " BaBs — Gan8m
(3.11)
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If we exclude not q, or q; but §, from the equations of the engine for
51050 or s, =0, we arrive at the dynamic boundary comndition at the
ldwer end of the corresponding line of the type

ga=W4(p)sh, (3.12)
where p is the differentiation operator with respect to t or considering
(1.8) ‘
c?nénﬂl'clnén'{‘ 9n=00n (5‘24‘ i’ss?l)- (3.13)

This boundary condition permits determination of the presented damping
coefficient of the vibrations of the liquid in the line.

* Fig 3.8 shows the dimensionless frequency-amplitude and frequency-phase
characteristics (6/32 ) and @2/92 ) for ‘hypothetical open and closed

system. (with respect to one of the fuel components) liquid-prdpellant ~
rocket engines:

2 Aw) e (o) ‘” (o) ¥ (o, (3. 14)
_ = % , |
- ) Afew) ' Y0 pluy yie)
a5 AN v gos B B
N / \ o 04 ——-—-// 7 10°
qo% = -20° ¢
\N/ A o —
q03 S 4900 o3| == 50
' AT P<
o Nl
quz AN 60° o7 0
4 // \\ %! \\
q01 F— -30°  qot - +—-5°
N \
AY o
N Nes00° _—/0
g w0 40 60 80w ¢ 2 40 60 &0we”
a (1) b -

Figure 3.8. Standard frequency-amplitude and frequency-phase
characteristics of closed () and open (-.-)
system liquid-propellant rocket:

a ~- relative thrust as a function of the relative pressure at

the pump input; b -~ relative consumption as a function of the

relative pressure at the pump input.
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The second fuel component is of great interest, for it corresponds to
the long line with lower frequency of the natural oscillations of the
liquid.

Generalizing what has been discussed, it is possible to conclude that the
control system (automatic stabilization system OY 1iquid-propellant rocket
engine) satisfies the assumptions made in Chapter 2 with respect to its
characteristics.

Equations of Disturbed Motion of a Space Vehicle in the Active Segment

Fig 3.9, a shows the diagram of the transition from the initial structural
design to the adopted calculation model for longitudinal oscillations of

- the rocket hull with tandem component (series arrangement of the fuel
tanks) [56].

Fig 3.9, b depicts the equivalent elastic rod with compartments containing
liquid, the two upper omes of which correspond to the rigid suspension
tank on elastic couplings permitting displacement of the tanks along the
axis of the hull, and the lower one, the supporting cylindrical tanks
connected with a rod through the reinforced framing.

The final dynamic diagram is presented in Fig 3.9, c¢ in which the equivalent
masses on elastic couplings are indicated which simulate the masses of the
liquid in the tanks and engine and also the elastic and rigid elements of
the rods corresponding to the liquid in the oxidizing agent and combustible
fuel component lines.

Fig 3.10 shows a diagram of the transition to the calculated model of the
same initial structural design as in Fig 3.9 except with transverse
oscillations.

Here the rigid compartments with the liquid rotating-as a result of the
presence of couplings together with certain cross sections of the hull

are introduced. Then the transition: is made to a uniform system of the
beam type with distributed aud lumped parameters. The wave components

of the fuel in the tans are simulated by certain equivalent pendulums,
and the engine, by a p: 2dulum with an additional elastic coupling. The
calculation diagram is ~elected analogously for torsional vibrationms.

In the final analysis tne use of the above-mentioned mechanical models
leads to the following equations of disturbed (with respect to the pro-
grammed motion) movement of the space vehicle:
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Figure 3.9. Dynamic diagram of a
booster rocket during longitudinal
oscillations: f

a -- initial structural design with
deformed (as shells} supporting tanks
and rigid suspension; b -- simplified
mechanical analog; c -- equivalent
elastic rod

Transverse oscillations:

Figure 3.10. Dynamic diagram of the
booster rocket during transverse
oscillations:

a —— initial structural design with
deformed (as a beam) supporting tanks
and rigid suspension tanks; b --
simplified mechanical analog; c¢ ——
equivalent elastic rod

R
(0 m)E+ P0G =P,

n=1

&
(JO —*' ‘,) "P+2 (XOAEH-*_gOaSn):My;

ne=1

. . k . .
a; (q/ + Blll'q}+ S?qi)—{_ 2 (Alnsn + ?}nsn)= Qj;

(3.15)

Pa (S',l + ps,;‘s:n + 01,2,5,,) + )‘nt‘+)‘0n'1';'{:' ?an;'i‘ i ()‘jn(;] + ?]n(/-/) =O

J=1

(J=1L2,....,m n=1,2,..., k).
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Longitudinal osciilations:

(m04-m) - 2 doSe=Pyi

n=s1
kR
a, (4 + allﬂ.‘ + J}q,) + 2 )‘jnsn =Q};
n=1
. .. m .
B (Sn+ psn"}' l'):S,,) '}' ;‘na’*‘ 2 )‘jnqj =0
. J=1
(j==1,2”."1n;ln==1,2,”.,k)

Torsional vibratioms:
ot e=My
- al(ql'l'pqﬂj'l'"},"]j):Qj (j=1,2,...m).

(3.16)

L (3.17)

In equations (3.15)-(3.17) the generalized coordinates g, ¥, ¢5 9445 Sy
have the following meaning: ¢ is the deflection of the metacenter xg of
the space vehicle in the disturbed movement; y is the angle of deflection

of the space vehicle as a solid state; ¢ is the angle of deflection of the

space vehicle during oscillations with respect to the longitudinal axis;
q; are the transverse and longitudinal displacements of the cross section

xio [equations (3.15)-(3.16)] and the angles of rotatio
section [equations (1.17)]1; sy are the "z-coordinates"
of the fuel in the n-th compartment.

n of this cross
of the free surface

The physical meaning of the coefficients of equations (3.15)-(3.17) is
clear from their structure: (m0+m) , (J°+J) are the -apparent mass and the
connected moment of inertia of the hull of the space vehicle; w,, aj are
the apparent. masses characterizing the oscillations of the fuel in the
compartment and the elastic oscillations of the hull with frequencies of
op and ws, respectively; Ans. Agn: Mjn aT€ the coefficients of the cross

couplings between the generaiized coordinates sp, di» Ty

are the damping coefficients.

¥y qua Bsn’ Bjn

The equations (3.15)-(3.16) describing the space vehicle of an object of
control must be simplified by the equations describing the operation of

the automatic stabilization system [the angular (US) and lateral (BS)],

and it is also necessary to consider their active disturbances.

i. The long-period movement defined by the disturbances P, (1), My (t),
My (t) and the properties of the space vehicle, just as a solid, absolutely

rigid body:
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S Elagu="P,(t;

_ o aque =M, () (3.1
n=Li(¥)—=L2 (0 ,
¢+ aatio=M(£); (3.19)
- uy=La(9). ‘

- 2. A short-period movement in the frequency range of the natural oscilla~
- tions of the liquid in the tanks:

R
Ctawh+ ) aes,satacu=0;

A=1
2
¢+2 (aﬁ"-‘,.sn'*'a';!,.sn)‘*”aw‘: 0; (3- 20)
n=1 A
Sa By, Sat o5 St s, as b s gh=0;
n= l’ 2;---, k;
w=1(%%
&
o8t Y (Gor,rat Gor, 7 st ==0;
ne=k,+k
.f.n+Brn."n’{'w?nfn'{‘arn?;é—i‘a;n;p:m (3 21)
up=L'(g).

3. The short-period movement in the frequency range of the natural elastic
oscillations of the hull:

- {4 a4 auu=0;
§+ aysd+agu=0; (3.22)
6}+ ?qjq'j'i"“"zqu]'*'aqlau:o:
u=L(¥);

p=p—F 1) g; (J=1,2,..., m);
j=1
(§+§9¢+avsu=0;
Pr+By it oyt @ =0; (3.23)

Bt Pibot- Wi, — w39 =0;
up=L' ();

P=¢+ 30, () p; (j=1,2,...,m).
J=1
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- To supplement the systems (3.15)-(3.23) let us present a more complete
system taking into account the joint effect of the mobility of the fuel
in the compartments and the elasticity of the hull and also the elasticity
of the engine suspension (the transverse oscillation regime):

®
CHagd+ 2 s Sttt =P ()

n=1

]
G, (ays 50 bs, )+ it + ayan =M, (1)

f=1
it Arteegt 21 (245,50 g 5a) 4 2 uit+q ,.,u=Q SO (3.24)
ok Bk ol asd oot al bt lﬁ(aan,m 130f1) =0
-]
ik - ot a0 =0
u°=Li<wTL; ()
¢°=¢—}2 () g5 O=C— (9= xa) b+ D1, (),
- j=1

G=1,2y..m; n=1,2,..., k).

Let us mote that the entire set of coefficients of the system (3.24) 1is
expediently divided into three groups:

The coefficients characterizing the space vehicle as a solid, rigid body
- of variable mass: ’

- Qeyy Ay Ayt aw, P, M, @)
The coefficients characterizing the mobility of the liquid fuel:
Uiz, Gs, 00 Qysy Qs 4 a2, ;’:,,' alw,,’ a;n¢, X6:
The coefficients characterizing the elasticity of the hull:
Ay jur a:lj“' a;qp "’3}' j {501' B _Ql(l)' :

The expressions for tne enumerated coefficients depend on the compositional
- system of the space vehicle, and they are deciphered below for a number
of important cases. Tne system of equations of disturbed movement of the
space vehicle in the direction of the longitudinal ¢xis also has the
form analogous to (3.18~3.24): i
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2 .
§8e+ E g5, Sa— Qutt =Py (8);

n=-1

3

. . " —

930 gy toa @t 3, Gajs,Sa—ague=Q (t)
f=1

. . g .m .
Spof p:nsn + wﬁ,‘sn + as,,Es’i" 2 Aspa,91= 0 - (3.25)
- J=1 .

Fy== arns,llaknén + arnsn"’znsn =0; .
2 o
u=Y L,(r,) (1=1,2 j=1,2,...,m),

n=1

where u is the increment of thrust of the engines reduced to the rated
thrust at the given point of the trajectory; m is the number of forms

of elastic longitudinal oscillations of the hull taken into account;

L, are the operators describing the dynamics of the engine. The generalized
coordinates qj (J=1,2,...,m) and s, (n=1,2) have, however, another meaning
than system (3.24) (see below and also sectiom 3.5).

Let us note in conclusion that the equations of motion of the space vehicle
are also used below (see Chapter 5) in matrix form:

: Mi-+eBx+Cx="bu, (3.26)
: : a=L,(8)— L,(v). (3.27)

Here the (ki+mt+2)-dimensional vectors

X={Z, ¥, S1s.0vy Spr Quoves1 g}
b=(’~—dzu, —Quuy OI' iy 0, —Qgusers ‘“‘lﬂ,nu)

have the meaning of the \féctors of state and control for the system (1.25);
the vectors :

Fv=10,1,0,..., 0, =M., —Tali
E‘={1, —XD+XG, 0,.-., 0| —nh-"l _nm)

are the observation vectors corresponding to the angular () and transla-
tional (z) movement of the space vehicle.

- The time functions = -
v gy X) w=(g.2)

are the output parameters for the object of control (3.26).
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The matrices A, B and C of dimensionality nXn, where n=k+mt+2, are defined

- directly by the coefficients of the system (1.24) or the systems analogous
to it. Let us note here that the matrix A is always in this case positively
defined on the basis of the positive determinacy of the quadratic form
corresponding to the kinetic energy of the space vehicle.

Then, by necessity setting Lj(v)=0 or Ly(w)=0, let us consider the structural
properties of the system (3.26) in the modes of translational and angular
movements of the space vehicle and also in the longitudinal oscillation
mode.

3.2. Simplest Cases of Investigation of the Structural Stabiiity of the
Space Vehicle :

Elastic Oscillations of the Hull of the Space Vehicle

Let us investigate the stabilizability of the space vehicle in the short-
period movement mode in the frequency band of the elastic oscillations of
the hull. Let us consider the system (3.22), setting Lj(w)=0:

z= azpht-azlh
= agulli (3.28)
g;=—03;~ Qg ulti

Pp=4— P14
j=-1
w=_L(p)¢° (j=12...,m).

As is obvious from equation (3.. 2§) ‘it 18 proposed that ‘the measuring
device generates a signal q,o__.q,__z n;‘;,'.' in the procéss of movement,
J

(3.29)

=1
which is the superposition of the forms of the oscillations of the
components (3.28) of the partial systems.

Let us proceed in system (3.28) to the variable
m
=3 i .20
=1

Differentiating expression (3.30) and substituting the following
expression in equations (3.28) . -

é}= —«)3(”--“ aq}uu'l
we obtain the following system:

.
Z=ax¥+ 0 2 0j9)t Gults
j=1
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» m 9 m .
q;_—._-lzl nmiq; -+ l:a.,,,‘ -~ E n]a,,],‘] u; (3.31)
. Jot
§)= --u)?ql '}"aqjuu;
j= 1, 2,. oy m
u=L(p)¢

- (the index "0" is omitted for simplification).

The characteristic equation of the system (3.31) is representable in the
form .

) 1+L(p)%’;-§:—2—=0, (3.32)

m
: wheze ()= pt [ (4240,
J=1 !
£ 00 0 .. 0
0 ays  Myp? NP2 Nap?
®k(p2)= 0 Qq.u P2+(0f 0 ... 0

- Let us denote aqju .
¢;= y J=1,2,...,m, ay, #0.

We omit the factor p"Z which is common for the polynomials <I>k(p2) and Qo(pz)
(only the angular movement is taken into account).

In accordance with the definition, the system (3.31) is structurally stable
if the zeros Ay and the ones yy satisfying the equations QO(Ak)=O,
@k(uk)=0, respectively, of the transmission function

2y — d’k (p?)
W PI= gy

are permutated, and it is structurally unstable in all other cases.
In the given case there is no necessity for writing out the criterion of
structural stability in general form, for the corresponding conditions can

be obtained directly. Actually, setting p=iw in the expression for
®g and ¢y, we obtain the expressions
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n
Dy (0?)= wl n (—w? -{—403);
f=1

®, (o) =0 ‘ﬁ (—“”+"’3)+i I e (—ettai} -

j-1 =1 i4]

Also assuming that the frequencies w, are numbered in increasing order,
let us calculate the values of the pglynomial ¢k(m2) ‘at the points wj

(3=1,2,...,m)¢ o ) 2
(D‘ ("’5)=aqjunj“’3 “ (—(I)I+U)[).
14

For structural stability of the investigated system it is necessary and
sufticient that the signs of ¢k(w-2) alternate on going from number j to
number j+l:

@, (62) > 0; 0, (03) <0 @, (03)>0s...
' or 0, () <0 @, (o) >0; @, (d) O.

2) L (j=1,2,...,m
Let us denote q)k("’l)"a"l“A’ (j=1.2 »

m
where A/=4j ] (—wj4oi).

J=1
since A;>0; A:<0; A>0; AO;... the system is structurally stable
if
. V, lu'l=a.,}.m}4>0 (j=12,....m) (3.33)
or Vqlun}=aq}“n}<0 (j=1, 2,...,M). (3-34)

The boundary of the region of structural stability of the spacecraft is

_ defined by the equation
V=0 (3.35)

The condition (3.35) denotes uncontrollability and unobservability of the

system (3.28) simultanenusly.

Physically, for the investigated system the condition (3.35) means either

absence of information about the form ng' (x0) of elastic vibrations of the

hull (ny'=0) or the absence of the possibility of control input to the
partial system characterized by the number B,(aqluf-'O).

The practical conciusions which follow from (3.33)-(3'.3‘4) can be repre-
sented in different form depending on whether 1{p) is a simulating or
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actual operator. If L(iw)=A(w)exp[i$(w)], in the first case it 1s necessary
to interpret the conditions (3.33) as requirements on the phase characteris-
tic of the control system (L) following from the conditions of stability

of the closed system made up of the object and the control system.

In the second case varying the sign of (V,,”}V,,,) to the opposite for any
number j indicates imstability on the corresponding partial frequency wg.
Rigid Space Vehicle with N Cylindrical Fuel Compartments

Let us consider the equations (3.15) where we used the controlling force
byyu, the moment b¢,uu, and also the projection of the following force

P (the thrust of the liquid-propellant rocket engine) on the axis { as the
generalized forces. Neglecting the elasticity of the space vehicle hull,
- we have:

N
(m-h-m) 2 4 J N+ Py=but

[=1
) N
(SN Dhasi= bt (3.36)
[l

1] (é;+a?s,)+l{‘:1+)\g;;¥=0, i__—ll 2|" 'Y‘N;
u=_L{p)}. . (3.37)

_ In the given case the vectors _l;, E have the form

- Pd

b=(b,5s bysr 0y...,0), g=(0, 1,..., 0).
Let us consider the case of coinciding partial frequencies o’=... =gyt=0%

The characteristic equation of the system (3.36)-(3.37) has the form

Do (p?)+ L (P) D, (P1)==0, (3.39)
rae @y (p7)=: p* (P2 oV — vy pf (P V=W (P24 V2
_ vt (P2 - VT, : :
0, (P2)=byu [— P (P AWV vy (P2 HV-1);

- N
— )‘2 12 . A N _ 2
vl = \ l: ! + o ] o 'V2= 2 8—1 _(AO—]M Ao._‘kl) .
. : AN
: f=l jm

i=1

pr(md+m) | w(JO+ 1) d iy (mP4-m)(JO41) ’
o . (3.39)
v3=.£. Korhy R 2 A + _baridy
- a2 dord i mo+myosrn " - pi(mO—4m) | #iby,(mOtm)|*
-

Excluding the factor d(p2)=p2(p2+02)N_2 common for ¢, and ¢, from the
investigation, we write the characteristic equation ?3.38) in the form
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PRaop-+a p+ar) -+ L (p) (b - b1 p° - by)== 05 (3.40)
ay=1—v;+vy a;=2(2—v;+vg); ap=34 (14 V)
bo=byu (—14va); by=7bpu (=24%); by=—c'bpu.

For determinacy let us assume that -14v;4>0, b u<0. The criterion of
structural stability of the system (3.36) has the form

A== (@b — b,a,) (@ob; — @100)~- (bobr — boag)* >0
or considering (3.39)
Vivg— V3 — vy vy —vavi 0. ‘ (3.41)

Let us introduce the dimensionless parameters

A
zl=-:—l&; k= ‘-l' ~_—___...£"_ __Rli ;
i A 104,” la2
22 0 .
e p D] (3.42)
i (m" + ) mo+m

Here Rg is the characteristic dimension of the compartment, o is the

- dimensionless frequency corresponding to the dimensional partial frequency
of the oscillations of the liquid in the cavities o; £ is the radius of
inertia of the body-liquid system. .

Considering (3.42) the criterion of structural stability (3.41) of the
system (3.26) is reduced to the form

U=k Zy+ ...+ kyZy) {kl (2,4-‘22: ‘)’+ +k~ (“’2: Iy _;_)2_

—(kx+.--+k~)(”’;‘+~g—)’+c,;[klzl+...+k~_z~—__.’*=+-c~-+m]’}>o_
‘ - (3.43)

1If we introduce the N di~ensional space, taking the values of 21, Z9,...,2y
as the coordinate axes, the boundaries of the regions of structural
stability defined by eyuation ¥=0 are a hyperplane kjZi+...+k3Zy=0

passing through the origin of the coordinates and the I]-iyperellipsoid

kl(zﬁ_'ﬂ; 1+%)2+...;§—kﬁ,(z~_|_°’; l'#_;_)f_(kl-'r...-}-k,v)x
x(F+ o [mzit-- +‘k~2~-—ﬁ;'—ﬂ'ﬁj’}=o.

the center of wh&ch is shifted with respect.to the origin of the coordinates
to the point (21, ZZO,'.. o Zno), and the axes are rotated with respect to
the principal axes 23, Zj,«+.s2N.
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In conclusion, let us note that a characteristic feature of the investigated
problem is the fact that the operator L(p) does not disturb N-2 partial

- systems (the system (3.36) is uncontrollable with respect to the N-2
oscillators); therefore the term "structural stability" essentially refers
to the equation (3.40), and not to the initial equation (3.36).

Oscillations of the Space Vehicle in the Heel Channel

Let us consider equations (3.21) describing the small oscillations of the
space vehicle with respect to the longitudinal axis under the assumption
that the fuel tanks are divided by radial baffles into N compartments.
Neglecting, just as before, the terms proportional to the generalized
velocities having order £, we obtain

N
6+ 2(19;,51:“011“:
{=1

. (3 .44)
§‘+w¥sl+a_,lgﬂ=0, = 1’210-” N;
u=L(p)b. (3. 45)
In the system (3.44) the vector b=(ae s 0uevy 0), where aggys agqp 8T

the coefficients which depend on the connected moment of inertia of the
liquid, the density of the liquid, the configurations of the compartments
and other parameters. :

Let us note that for L(p)=0 the system (3.44) 1s conservative. Hence,

@42, >0 (I=1,2,..., N).
The characteristic equation of the systém (3.44) will be represented in the
form (3.32). Setting p=iw, we find:

' —w? — Qg5 07 — g, .. — Qg7
2
—as g0 —wito) o ... 0
Do (W)= —gop02 0 - —wtdoi... O. ;
— Qs 00 0 0 .—-u)"’+w%/
—Qgy —Qys,0 —gs07 .. —aa,Nuﬂ
: 2 2
0 —olol 0 .. 0
o= 0 0 —vitef.. 0
0 0 0 ——w’-{—w%,

On the basis of the definition, the system (3.44) 1is structurally stable if
the zeros and ones of the transmission function W(pz) alternate.
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Obviously, this condition will be satisfied if the signs of the function
¢0(w2) at the points w2=mi2 (i=1,2,...,N) alternate.

We have

By (o) =t (o )y o) (o). oy —od). (3.46)

On the basis of conservativeness of the system (3.44) aGSiaSie>0.

Assuming that w12<w22<...<mN2, we find

sign @, (m?): —signdy (“’?H)v i=12,...,N.

Thus, the system (3.44) is structurally stable. This means that if the
model (3.44) is taken for the space vehicle, its oscillations with

respect to the longitudinal axis will be stabilized i1f we realize the phase
lead ¢(wi)>0 of the control system in the frequency range of wjy, Wps...,Wy.

3.3. Stabilizability for the Classical System (Two Fuel Compartments)
Dynamic Stability Criterion

Let us consider the space vehicle of the classical system in detail, taking
into account the presence of two types with combustible fuel component and
oxidizing agent required for operation of the rocket engine. In the system
of equations (3.36) we set 1=2: '

(m0+-m) Z4+ sS4 Ph=b,,4;
(SO J)§+dyS1+ AnSo=byutts

g1 (51980 + Mz 4-doih=0; 340
B2 (:‘;'H‘ 9332) + )‘22 + )m;i’=0;

u=L(p)V. (3.48)

The characteristic equation of the system (3.47), setting 612=022=02, will
be reduced to the form : )

Dy (P =pH{[1— (v, Lv) 4] P2 [2—(v,+v2)+(v“+v2¢)']'p"’+

- ' . +ot {14 (Ve vx)]}=0. (3.49)
v It 23, A2 23, 350
== y Vo= H .

Here R mm tm) | m o) P p(m04m) +uz(!°+l)' (3.50

= (Ap1ha — Ag2h;)? s V= Agiks (__P_) .

pikg (m + m) (JO 4 1) w0+ ) (m0+m) \o2 ]’

_ Aok P
- VxS 2 (JO + 1) (k10 + m) (az)'
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On the basis of the properties of the system (3.47) the coefficients of
equation (3.49) are positive. Here

0< v < 1 0y, <1 0y <.

The criterion of dynamic stability of the space vehicle in the given case
has the form

D=4[i +V1:+V2cj 1 ';(V1+V2)+"3] —[2— W1 v+ (v v <O.

(3.51)

Let us introduce the following dimensionless parameters:

12 2
Z[__—_._ll_l_‘QL;‘ k=—%; Y==—'~%——)';
m m

o o 3.52)

=R . g o g0 r0 2.

C=omr? F=maya *=p (W m
E>0 0y o<y <L (3.53)

Figure 3.11. Boundaries of the Figure 3.12. Discriminant D of the
regions of dynamic instability of characteristic equation ¢(p)=0

the space vehicle of the classical as a function of the parameters
system in the plane of the 21, Z2

parameters 21, Z,: 03<U<I&emh y=ud

Using (3.52), let us reduce the relations (3.53) and the stability criterion
(3.51) to the following, respectively

vi=y (1421 vo=vk(14 22 vo=Vk(Z,—Z, )
Vie=2vZy; va=2vkZ,; - (3.59)

D=4k(Z,— Z P14 2V (Z1+hZ) = [Z1+ A Z3+ 2 (Z1+ kZ)P <0
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In the space of the parameters 2y, Zys Y5 k and ¢ the equation D=0 finds
the surface which separates the regions of stability and the regions of
instability of the investigated system (Fig 3.11). From the structure of
the inequality (3.54) it follows that the equation D=0 is conveniently
considered as the equation of the plane curve in the variables Zy, 22
considering the remaining variables as parameters of this curve. Then

by the reglon of stability of the system (3.47) in the absence of dissipa-
tion we mean the region (3.54) bounded by the curve D=0 in the plane

(Z]_, ZZ)-

The form of the curves D=0 for various values of the parameter [ and fixed
values of the parameters k, Y (k=2.0; z=0.1) is presented in Fig 3.12.

The regions of instability of the system for each of the values of ¢

are included inside the corresponding closed curves close, as will be seen
from what follows, to ellipses. The numerical analysis shows that the
regions of instability have similar form for all values of the parameters
k, vy, satisfying the expressions (3.53) (Fig 3.12, 3.13).

Let us explain the geometric and physical meaning of the parameters 21, 29
in the simplest case of a body with two cylindrical cavities of identical
radius R. ’

Here we propose that the depth of the liquid hy (1=1,2) in both compartments
is sufficiently great: hj22R. The hydrodynamic coefficients of the system
of equations (3.1) in this case have the form
P .

(m+mR "
_ TG

™ —‘“_:l)QlR-’; gy =28 = Do.Ra; - (3.55)

n
X =“é; k% )‘2='En; 0:R%; A=c=

2
% T
L= _21’ [-xr{‘ h— %] oR; M= —--32‘ [XH‘ hy— 'f‘] o:R3.

Here E=const=1.841; x; are the coordinates of the bottoms of the compartments
in the coordinate system connected with the space vehicle; pj is the fuel
density in the compartments.

Consdiering the equat.ions (3.55), the parameters (3.52) assume the form

Zim i (b = 0,54R); y=143 25—, f=y (=02TRI.

{ mO4-m J1
As is obvious, the parameters Zj (i=1,2) are close to the dimensionless
coordinates of the free surfaces of the fuel in the compartments, the
parameter k characterizes the relative density of the liquids, the
parameter y defines the degree of physical connectedness of the wave move-
ments of the 1iquid with displacement of the center of masses of the
space vehicle and, finally the parameter ¢ characterizes the relative
elongation of the space vehicle in the direction of the longitudinal axis.
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Z

Figure 3.13. Nature of the effect of Figure 3.14. Nature of the effect
various partial frequencies of oscilla~ of the densities of the fuel

tions of the fuel in the combustible components on the region of dynamic
fuel component,and oxidizing agent instability of the space vehicle
tanks (B=-lt+oy /012) on the regions a —- parameter k=0.5; b -- parameter
of dynamic instability of a space k=1; ¢ -~ parameter k=2

vehicle

In the more general case 01#0, it is necessary to add another parameter
B=(—1+022/01 ) characterizing the development of the partial frequencies

of the liquid in both cavities to the set of dimensionless parameters (3.52).
The stability criterion (3.51) assumes the form

D= — (v, vy vie - a0 F dvg (L b vieF v+
FBAV(2(1—v)) [2— (vy - vo) - viet-vae] + .
Fhey (=i [1—(vi+v) vl <O, - (3.56)

where v, (r=1,2,3) and Vor (2=1,2) are defined by the expressions (3.50).

As numerical analysis shows (see Figures 3.13, 3.14), the set of curves
D=0 bounding the regions of instability, has the same form as in Fig 3.11.
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Structural Stability Criterion

The characteristic equation of the closed system (3.47)-(3.48) is represent=
able in the form .

Pt +ar+ a))+L(p) (boP*+ blP’+?)=0- (3.57)
Let us denote
Oy (P)= 7 (@o* + 0P+ @zl @y (PP)=bop' + i+ b
Qo= 1=tV +vs a=[2— (V14 v2)+ (vietvad] ok ay=(14vy) 9%
Bo==byu (— 1 V4% by=cbyu (—24eh by=—atbysy (3.5

where in addition to (3.54) the following is denoted

. .
2 2

V= [ 7‘1 + ‘ll)\nlbzu ] .
b | i (m0+m) . wiby, (mO+ m)

The criterion of structural stazbility of the system as the criterion of
alternatability of the roots of the equations ¢(=0, $=0 reduces to ome
inequality: - : ’

8= (@15 — aaby) (Boby — Bybo) — (@oba— byma} >0
or considering the equations (3.58): .
(V1 ¥a) Vo= Vi — Vot (Vi Vo) va— (Vie - v)vi>0.  (3.59)

As the characteristic parameters- for the given system let us gelect the set
of parameters (3.52), adding the parameter B=(—1+022/012) to it. .

The regions of structural stability of the spacecraft will be constructed
in the plane of the variables Zi, Zp, and in this case the remaining
variables acquire the meaning of the parameters of the boundaries of these
regions. By definition, we have 1>0; —oo<c<oo; c=Zo~

The regions of application of the other parameters follow from the condition
of positive determinacy of the quadratic form corresponding to the kinetic
energy of the investigat »d mechanical system:

sl (zle: ochci=Y.
|1|<ﬁ I2|<Vi¢_v <k . (3.60)

The criterion of structural stability of the system (3.59) expressed in
terms of the dimensionless parameters Zl, ZZ’ ¢, ¥, k, B, G has the form
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W =(Z,—mZy) (Z, —MZ)) (0, 23+ a:Z3Z, +a,Z\ 234+ a3+
a7+ agZ\ 7yt i 2+ 021+ agZy 000 <O, (3.61)
where . '11.2=—;"[(1"k1+?) + V(=R 2P +44]);

=k + 280G ay=—hie+20eNG (2 — k)i ay=C 120V, (1 -2k,
' gy= —c 20y ag=hy (2 — 1)+ 2kt —Akev L (1R (3.62)
= —'302'}‘("'2"‘ D(1—Ff 43+ 2ic—2cy —
— bye — 2oy, + 2kiev — Bhicv);
ay=—(c— 1)+2C(""c‘i‘%"Yl'l‘?kchx'l'ECYx);
ag=—c (14+-A+H)+2 (1 +o+B) (i+havi+in—1—
’ — PRV (€2 2) - 23ki0vE BV — 1)
. ag=c(1+k—3+20(1+A —yy— vy — 287, F
. + By — [Bcv — 3, —B—4devi?s
) ay=— 8242 ( —2%c + Fevi - BRiev, +Fev) +
442 (— BBV, - Bhyvy - B2v — BAaYY) (3.62)

The parameters (k, y) and (kp, Yl) are related by the following expressions:

1

TR

Fig 3.15 shows the regions of structural stability for the cases

B=-1(01>05); B=0(cl=02); B=l(ol<02) (crosshatched) where Fig 3.15, a,b,c
correspon& to the value of the parameters c=l, Fig 3.15, d,e,f corresponds
to the value of c=0 (the curvilinear boundaries degenerate into rectilinear).
For the other dimensionless parameters the following numerical values are
assumed: :

k=2 y=005; (=05.
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Figure 3.15. Standard regions of structural instability of
the space vehicle of the classical system
(crosshatched)

Study of the Geometric Configuration of the Regions of Unstabilizability

The functions W(Z), 2z ¢, k. B, ¥ 0) and D(Z,Zo kB9 T)
will be represented in the form of the polynomials with respect to powers
of the variables Zy, Zj:
¥ = (Zy—Z) (Za—Z) @2+ a2t a2 Zit aZit
+aszf+a52,22+a7Z§+aGZ,+a922+aw), (3.63)

where the coefficients a; are defined by the expressions (3.62) and

D—d A+ d, 232y + a2 23+ diZ 23 ds 28+ deZit
14 222yt dy 2o 25+ de 3 dioZi+ duZiZ - dnZit
+dlazl+dlizi+dlsg (3-64)
where it is denoted .
dy=i (18R, do=8UkYY: dy=2kV1(14-BhiVo)i dy=0; ds=Ri¥};
do==202 (1—Bhyv )i dy =22V (1—2kyvy): dp=8LR3V3H 20k v3 (1—2v,)
dy=282 (1—2v));  dio=V} (14 2y [(P— 288 (1 =)+ 2(14 &)];
dy =20k 3 - BRVE (14-8BRyv, -+ 2o V) dip=4kivi[— 1‘+
+ (V=0 (14 Blyvy - 220 V20 - 2R, 7 [ - oy — By (1 —v1)] - CA3 Y5
diy=20V1 [vi (1) + 2Rava (1= 1)+ 237 — 2RVl doe=20knvi[14
A By — 2k, 3Ry, (1= V)] dis=4[—V1(1+R)] 307 (2— V) +
+4[v: (1 R) — Ry [T 2Ry - By — Vi (14 Ry) +-

+ 2y (1=
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The parameters k, Y, %, ¢, 2], Zp can assume any values inside the region
given by the inequalities (3.60).

As is obvious from the formula (3.63), the regions of structural stability
in the plane Zj, 22 in the general case are bounded by the straight lines
Zz-nlzl=0, Zz-n221=0 and the third-order curve

alZ:{-{-aszZz—i—a,Z,Z%-l-a4Z;+a52:(+aﬁZlZ,-[-a7Z§-{—
e +ayZ,+asZy+ap=0. (3.65)

The type of curve (3.65) is defined by the values of the parameters

X,
p=(—1+033) and c=-= 7 g, characterizing the ratio of the partial

frequencies of the oscillations of the fuel in the compartments and the
arm of the controlling force.

For B=0 (01=09) the equation (3.65) is split into the equation of a straight
line and a second-order curve (Fig 3.15, b).

For c=0 (the case of control where the stabilization of the space vehicle
is realized by using a pair of forces) the curve defined by the equation
(3.65) degenerates into a set of three straight lines (see Fig 3.15, d,e,f).
These casesexhaust the possible forms of the curves bounding the regions of
structural instability for the investigated classes. Let us consider them
successively.

a) General case: B#0; c#0.

For simplification let us set ;=0; let us represent the equation (3.65)
in the form

| ¥(Z,, Z)=chZ}—chZ3Z,4cZ,\Z3—cZ)+ by (2 1) 23+
. H(E—1)(1—k) =32, Z,— (=N Z—(1—k+D Z,+
(1= by —%) Z,— 30 =0, (3.66)

Let us find the asymptote of the curve (3.66), the equations of which will

be represented in the form
Zy=a; Z,=b.

For determination of the coefficients a and b we have the equations

kb —kata*+a*=0, ‘
- c(—k+2a—3a% b= —k (c?— 1) —[(c*—=1) (1—&)—Ela—(c*— 1) @?,
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the joint solution of which gives only one asymptote

B

ZQ’_:ZX——C(‘__ ky) *

Let, for example, c>0. Since k>0, the position of tne asymptote is
determined by the sign of the parameter 8.

The curve (3.66) pertains to the group of defective hyperbolas. The
canonical form of its equation has the form

xy2+ey==Ax“—}-Bx?+C_x—§—D (A<L0),

- — 2
where e_—___ﬂ__. )\_l__k_lz—_{—n H =_a_; n.—_—e_-‘-_l;
(R 2144 ¢ 2
B — 22k 1+ 1 —
by Be—i P c= AT Bty
(14 ~y)2 4(1+ k1) (A +k)2

; B 6k + 1 — ‘

p=—2 { 1=t gl +n2].

A+ mel 40+ mp 1+

Equation (3.66) is reduced to this form by limear nonsingular transforma-
tions (c#0): 3k 2
- \3=h =]
Zi=x+tytr 5oy 2

_ 1—3k _c2—1
2= k‘x+y+12(1+k,) 2

The basic forms of the curves of this group are determined by the form of
the roots of the auxiliary equation ‘

Axt 4 Bx34Cxr4-Dx+ -3’-=o.

In the given case

A o) m L 1[gl=h
BA= "R l/u +kg4+‘k1 [2 T+ h +"]'

Xo==X3 )

e

It is obvious that X}<Xo=X <x4 for all values of the parameters B, ki,
¢>0. This conclusion rema?.ns valid also for z#0. The curve (3.66)
bounding the regions of structural stability of the system is presented
in Fig 3.15, a, c, where Fig 3.15, a corresponds to the value of 8>0,
Fig 3.15, c, the value of g<0.

All of the conclusions remain in force also for the values of c<0.

b) The case of B=0 (c#0).
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The system (3.47) is structurally stable if the following inequality is
satisfied:
: (z,—zx2<z,+kzz>{(zl+"—‘+ ez S )

_(1+k)[°’+‘ ++ ] Loyt [ (k7 — ‘";"] }\o. (3, 67)

The third cofactor in the expression (3.67) in the plane 2y, 22 defines
an ellipse which is one of the boundaries of the region of structural
stability of the system. The axis of the ellipse makes an angle 8 with
the coordinate axes Z1, Z,. The coordinates of the center (219, ZZO)
and the angle 6 are defined by the following formulas:

=l 1—c24+ e [1—-2y(1 +2)] :
214+ ety (1+8)
0=-"arctg Kyck .
2 (A=K +ey(l+8)

The regions of stability of the system corresponding to the inequality
(3.67) are crosshatched in Fig 3.15, b.

c) The case c¢=0 (8 is arbitrary).

This case is realized for control of the system using the pair of forces:
setting b,,=0 in the initial system (3.47), we obtain the structural
stability criterion of the system in the form
(Zy—Z1)( Zy =M Z) (Zy—MZ1 - by) (23— M2y + b)) >0
o= (1=t +8) = VT— = FFFF4A
bra=b12 (R, 2 L V)

where

As is obvious, in the given case the regions of structural instability are
bounded by a set of straight lines (crosshatched) in Fig 3.15 d, e, f, the
position of which with respect to the origin of the coordinates is
determined by the sign of the parameter B. The case B=0 (Fig 3.15, e)

is the simplest in this case, for the reg:ons of structural instability
degenerate into the band

Zy+kZ <05 Zyb bZy (L 1) [1— (1+k 1>0.

Let us return to the analysis of the regilcns of natural dynamic instability
of the system. The boundaries of these regions are defined by the equation

D.(Zly Z2v ] .’ cv )= (3' 68)

133

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3

i FOR OFFICIAL USE ONLY -

and, as is demonstrated, they are a set of two ovals in the right and _
left halfplanes of the plane 71, Zy. ’

For ¢+0 and $~0 (a body of relatively large elongation with equal partial
oscillation frequencies of the liquid in the cavities) the boundaries of
the regions (3.68) are quitc precisely approximated by the ellipses
(k+te VED Z O VR =R 2, 2o+ (1 =0 VB Zi+
+(2V’—¢+C1/72)Z1'H—21/73+C)Zz+(1+k)=0; (3. 69)
(k=Y 2 VR(= 1+ R 2 Zeh (10 VB Z+
H(—2VRF ) Z,+(2 Vit Z+(1HR=0  (3.70) i

with centers at the points

. 1
- S i:i7f

) ln

at

1 4

T -kt
% .._V‘ 2
The axes of the ellipses are rotated with respect to Z1 axis by the angle

3 AUl i=1
We+RFVEQ-H '

9,=—;— arctg

Let us investigate the problem of the mutual arrangement of the regions of

1 structural and natural dynamic instability of the space vehicle. Let us
consider the simplest case of ¢=0; B=0 when the boundaries of the regions
of structural and natural instability are defined by the equations

(Zy+RZY | 2o+ hZpH (B 1=V (1Al =0
(Z2RZ3H (L B L (21 RZDP — 40 (Za—ZiF X
X [1 46 (Z14 £ Z2) =0 '

Figure 3.16. Mutual arrangement of the regions of dynamic
double crosshatching) and structural instability
of the space vehicle with two fuel tanks:
a, b, ¢ — | rameter c>0; d, e, £ —— parameter c=0
134
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From the general theory discussed in Chapter 2 it follows that the regions
of natural instability are located inside the regions of structural

instability.

[ ——

//zﬁ_\
/ a1y

/
.S:
I

'~

Figure 3.17. ©Nature of the effect of various oscillation frequenciles
of the fuel in the tank on the curvilinear boundaries
of the regions of structural instability of a
space vehicle (8=—l+022/012);

a -~ parameter B¢0; b -~ parameter B30

Z (—VI]T" , V/T) p2) F
_ T —]

/|

7/<:7 ‘-\ﬂ C=0,1 25

) Lm=10\{0,75 04 (T;?"."’T)

D f

AN

\N

Figure 3.18. Mutual arrangement of the regions of natural and
structural stabllity of a space vehicle for c<0
("forward" with respect to the metacenter of
location of the servoelements):

k=0.5; 2¢=02; vy=0.1

W
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This is, of course, valid also for the investigated system; in the given
case there is tangency of the corresponding boundaries at the points

. _/;,_1_)-( % ____L).
(-vE %) (VE —55);
K—%+ﬂ%("ﬂr~mﬂfﬂ‘m1—%%(—%+*%m
g, =t [1 =y (1A au=VE[1—Cya, (144

The mutual arrangement of the boundaries of the regions ¥Y=0, D=0 is
presented in Fig 3.16, e.
In the general case B#0; ¢#0 the various versions of the mutual arrangement
of the boundaries of the regions ¥=0; D=0 are presented in Fig 3.16.
Examples of calculations of the regions ¥=0, D=0 for standard values of
the parameters are presented in Figures 3.17 and 3.18.
3.4, Space Vehicle with Engine on an Elastic Suspension

Statement of the Problem

Let us consider the equations of motion of the space vehicle (3.24) waking
the following simplifying assumptions:

The space vehicle is controlled by a sustainer engine on a gimbal;

The mass and radius of inertia of the deflected engine are small by compari-
son with the mass and radius of the inertia of the hull;

The engine has high unit thrust (the ratio of the thrust to its mass);
The frequencies of the elastic oscillations of the hull wg in the engine
w, on the elastic suspension are close in the sense that hlgh connectednesse

of the corresponding partial systems is insured.

Neglecting the effect . " the mobility of the fuel (oi<<wj) the equations
(3.24) of disturbed m.t’on of the space vehicle will be written in the form

’ m e
Fbanh+ gk aihann=0;

j=1

mn .-
¢+2a¢qiq,+awu+a¢u=0;

=1
0+ 0e, gyt agpitaqut=0; 3.71)
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m m
w ’ o ’oe
it o auy (1) + Doy tuz+ Y tug g+
=1 7o
+ aub= wju®;

=L (P); P=y— (2 g;.
7=1

In the system (3.71), just as before, the following notation is adopted:

z 1s the displacement in the transverse direction of the point of the hull
bounded to the metacenter L %H

¥ 1s the angle of rotation of the hull with respect to the transverse axis;

94 is the generalized coordinate corresponding to the j=th form of elastic
vibrations of the hull (j forma are taken into account); in addition, the
following notation is used: x° is the coordinate of the sensitive element
of the stabilization system; u is the angle of rotation of the engine;

u® is the angle of rotation of the servomechanism.

In the system (3.71) let us retain the equations corresponding to the two
oscillatory elements with frequencies of g and wy. Omitting the index j,
after certain simplifications we find

b agui + By =0;
g-+wig+aguit+anu=0; (3.72)
tiot wlte + Guy's+ ang =i
w=L(p)[y—n’"(x)q}.

The characteristic equation of the system (3.72) is represented in the
following "standard" form:

) ®o(p2)+ L (p) Py (87 =0, » (3.73)
where 0o (p)= P (@0 +a, 14 ay);
O, (P)=byp* 4 b, p*+ by (3.74)

2
[0
Let us introduce the parameters x==1—-4§ncq==——-
w
7

and we assume that y and {, are values which are small by comparison with
one, which follows from the essence of the investigated problem. The
coefficients of the polynomials (3.74) can be represented in the form
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. - 9 v ,
o= | —(@yuBuy~ Cqulug)i Do=1u (4 — Qye@qu);

.

2 . . Bqu 2 2
a,=uy, (2——X—Q¢uau¢~—¢lu¢+a—auq) 5 b1=u’um0 X
oo it

’ Qu
X [uq,,,-{-cq(l - aq,,,)];
Y

4 ‘ ’
a2=mq( l—x _awcq); b2=(')5(')ch-

(3.75)

The system (3.72) is naturally dynamically stable if
D=a%—4a, >0, " (3.76)
and structurally stable if

W= — (boay — aghyP -+ (b1as — ai0n) (boas —aoh)) >0. (3.77)

The problem of investigating the system (3.72) thus reduces to analysis of
the structural properties of the system based on inequalities (3.76), (3.77)
and the dependence of their lefthand sides on the characteristic parameters
of the space vehicle.

Let us introduce several groups of parameters in the investigated system.

The parameters characterizing the elastic properties of the body:

X, — X, NS
2= =0 z=n(xd) yZ=o (3.78)

The parameters characterizing the position of the axis of suspension of the
engines: ) T - :
Xq—*p *r 9 =0; (3.79)
I .

=0; yo=

Yo=

The parameters directly characteri-ing the dynamic interaction between the
hull and the engines:

b e T IO T L A L
yl-.:_.—_—nz;;.‘v — a:2m*2(wu+“q)' p= Ve I Pl
L YKL (3.80)

The auxiliary parameters: the dimensionless mass of the system p reduced
to the initial mass, the characteristic frequency, the unit thrust and the
_ radii of inertia of the engine and the body with respect to the axis of
- suspension and the metacenter, respectively:

(_,,_gr‘_V P, b=t p=) I _l=]/1_—.‘ - (3.81)

m*’
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The characteristic points x which figure in expressions (3.78)-(3.81)

are as follows: D -- center of mass of the engine; Q -- axis of the
hinged suspension; P -- plane of the bearing frame of the form on which
the engines are mounted; G -- metacenter of the body-liquid system, n(x),
n' (x) -- form and derivative of the form of the elastic vibrations of the
hull; a -- generalized mass corresponding to this form.

In addition to the enumerated parameters not connected with the control
operator, let us introduce the parameter

LED]!
Viniey ' (3.82)

€=

characterizing the sensitivity of the elastic system to the actions of this
operator.

Study of the Regions of Dynamic Instability

The equation of the boundary of the region of dynamic instability can be
reduced to the following form considering expressions (3.78)-(3.80):

(Z0Z3— Z, (902, +B)+a(yoZs+BRfe=
__4azoz;
Ty

(1=aZy)[1~L 2, (32, +)] (3.83)

In practice it is usually possible to consider B0, ¥2~0, Zdiyo—yl.
The equation (3.83) has real solutions 2y, Zy only with a positive righthand
side: - .

Zy(1—aZy)>0.

If we exclude the degenerate case of Zg=0 which is of no interest, it is
possible to define the upper critical value of the parameter a=a0=l/20.

For o>a0 the instability is impossible; for a<al it 1s a region of instability,
the boundaries of which can be found from the equation (3.78).

Let us introduce the variables L1 ;2 and parameters 7, §:

Li=yoZh (=00, =0;

9 (3.64)
w=2yZ3 t=ay,=0.

In new variables we have

R - Bt G (1146 =0, (.85)
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where these variables are defined in the following quadrants of the plane

Cl>0r C2>Oﬁor C>0; (3.86)
C|<O. (2>0 for(_<0.

The equation (3.85) defines the second-order curve passing through the
origin of the coordinates.

In the sense of the problem a0-0>0; ¢#0, so that the following inequalities
are valid:

o< —3<1 for3<0; 1—-(>0 fors 0. . (3.87)
Then, on the basis of the structural arguments the following estimates are
valid P '
gl K 1 £or. o <O [l K1
Calculating the invariants of the curve (3.85)

4a? (
Ji= 1 (=0 Jp=— 4B (1 —CF8); Ja=——§;(1~t’)(l—t+o)"
(3. 88)

considering (3.86)-(3.88) we find that depending on the magnitudes and
signs of the parameters ¢ and § the following cases are possible:

a) 8<0; << 140
Equation (3.83) defige's the ellipse with the center at the point

o a(—Ca) o 0 _a(=0gg 3.89
U=y <0; L= EG >0, ( ' )

the axes of which are rctated by tl.> angle

m—i- _1.. 2(l_c+26) P .
P 5 3 arclg ==y v i 80
‘?F—‘—-_l—a.cl" 20=t+2) , if -0<(<1+23_

2T =2 —1

In Fig 3.19, a, b the regions D<0 are double crosshatched, However, the
regions located in the first quadrant ((for §<g<0) or in the second quadrant
(for 0<z<1+28) have physical meaning.

b) 3==0, 0<§< 1.

The equation (3.85) defines a parabola with the axis rotated by the angle
¢=—arctg(l-z) with respect to the 0%3 axis and the focal parameter

2a (1 — ()2

R TR I N e
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Figure 3.19.

Regions of stabilizability (1), unstabilizability
(2) and natural dynamic instability (3) of a
space vehlcle with the engine on an elastic
suspension for §=-0.1

The regions D<Q are represented in the given case in Fig 3.20, a and b
(double crosshatched).

The regions of stability (instability) located in the first quadrant have

physical meaning.

)5>0, 3K 148, CE L

The equation (3.15) defines the hyperbola with its center at the point

¢

0
1

2y3

with the axes rotated by the angle

= ——;-arctg

(L4200 el —o

2y

2(1—¢+20)

(1 —2)2

- The regions D<0 are presented in Fig 3.21, a and b (double crosshatched).

d) 8>0; (=1.

The equation (3.83) assumes the form

G (c2+4ac1—5‘—‘})=0

The regions in the first quadrant have physical meaning.

and, as is obvious, defines the pair of straight lines:

L=0; =
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The straight lines (3.89) coincide with the asymptotes (for ¢+1) of the

hyperbola, for in this case

¢ —ayh 8 —0; tg 2 — —48.

The regions D<0 are presented in Fig 3.21; only the regions of the first
quadrant have physical meaning.

072,
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) &, o g G . . N\
SRR i SN\ i
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TR-A NN 4 8 ;1]'2; SRI4 ] §am
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Figure 3.20. Regions of stabilizability (1), unstabilizability
(2) and natural dynamic instability (3) of the
space vehicle with engine on elastic mounting for

§=0
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Figure 3.21. Re. lons of stabilizability (1), unstabilizability
(2) and natural dynamic instability (3) of the
space vehicle with engine on elastic suspension

- for 6=0.1
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Figure 3.22. Regions of stabilizability (1), unstabilizability (2)
and natural dynamic instability (3) of a space
vehicle with engine on elastfc mounting:
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- Figure 3.23, Nature of the effect of Figure 3.24. Nature of the effect

the parameters §, f on the region of of the parameter ¢ on the regions of
dynamic instability of the system dynamic instability of the system
made up of the space vehicle and the made up of .the space vehicle and the
engine on an elastic suspension engine on an elastic suspension:

0=0.80; 6=-0,10; vy=0.005.
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- Additional elements of the boundaries of the regions of natural dynamic
instability of the system (3.72) are presented in Fig 3,22, a and b for
the values of the parameters ¢ and 8.

The coordinates of the apexes of the corresponding curves
a(1-0)
Y

do not depend on the parameter 8, which is illustrated by Figures 3.23 and
3.24.

C?:(Z\’—l, Cg':'

Thus, the equations of the conical cross sections defining the boundaries

of the regions of natural dynamic stabilit of the object of control in

the plane of dimensionless parameters { and § were obtained. The parameter §
characterizes the topologic properties of these boundaries, and the parame-
ters r#1, the metric properties of the boundaries.

The straight line ;10=ay‘1 is the envelope for these boundaries of the
regions of instability with fixed value of ;10 for any combinations of
parameters G, 8.

Study of the Reglons of Structural Instability

The equation of the boundaries of the regions of structural instability
(3.77) considering the relations (3.78)-(3.79) has the form

V= —yZ,Z} (%mzo) (A—-‘% zl)2+—z§z§zlz; x
x(%—zo)(—A+zoz,)+—‘§-Z%(f—zo){—aA><
x(A—-ia-Z,)z—i—ZoZ%[A—ZQZ,+21(—;—-—ZO)]—3223><
_i_._ 2, 2oy o (L B {3.90)
x(Lozf4 B 2z (S-m)- At Lzt
+EL 28 (-~ 20) [A—zozl+zl(—;——zo)]+
+*‘-‘g;.zlz;Az(-;—_zo)(—A+zozo=o.

As the characteristic parameters let us introduce

C= ol Lo=ZoZh =0y B=0Y5 L= z:z, . 39

In accordance'with what has been stated above setting g=0, it is possible
to reduce equation (3.90) considering (3.91) to the form
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_ R 2 2
1 3z° z;cg{—-chzz [—"(1—c+26)— % }thn—
a a

Y a

N T TR HL SR TN IS B SN AW IS S
- (1=0) [a+y, (1—=t+3—22 (1 C+23)]Cz
(1 ~-8)? 0.
~L ]—_ | (3.92)

As is obvious from the expression (3.92), the regions of structural
instability are bounded by a straight line

=0 . (3.99)

and the set of curves defined by the expression in braces which after
simplification assumes the form

1+t
€+ 1 —C)ltoﬁ+ L—(1—C+ a)—:—]

c2='l

(3.94).

Let us consider successively the same cases as above.

a) 83<0; 3L 145

The regions of structural instability are presented in Fig 3.19, a, b
(crosshatched) correspondingly for the cases

L >0; 4<0.
b) 8=0; 3L 1.

Setting 6=0 in equation (3.92) we find that the regions of structural
instability are bounded by the straight line (3.93) and the hyperbola
_1-t Gl 3,95
R (8.98)
with the center at the point
1 —
1§g=—_—t'

Lo
[crosshatched in Fig 3.20, a (£y>0) and 3.20, b (tg<0) 1.

0—- o —
L= %

The common points of the boundaries of the natural and structural stability
of the given case satisfy the equation

G=ge[ 1V 147 6= i !

W thi+l—c’
“w_ ¢ . i Lot 1—2 EOET'{‘I
“= 0[1 V1+c]’ “TTR WA=
c)8>0 {148

(3. 96)
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The region of structural instability of the system calculated by the
boundary equations (3.93), (3.94) are presented in Fig 3.21, a
(£g>0) and 3.21, b (gp<0)..

d) 6>0; z=1.

Setting =1 in the equation (3.92), we find that the criterion of structural
stability of the system (3.92) assumes the form

v= — =25 Zid (it 1~ >0. (3.97)

For 1—uZO>0 (the conditions of the possibility of natural dynamic instability),
as is obvious from equations (3.96), the region of structural instability
occupies the entire plane (Zys Tj). -

For 1-aZp< 0 the paturally dynamic stable system (3.92) is also structurally
stable.

In conclusion let us consider another case (degenerate) where z=1+6 and
D=(6;l+c2)220 (the system is naturally dynamically stable or, perhaps, it
is on the stability boundary). In this case, we have

W (Ga+ 1)1c2(coc,+1—c)+%}>0. (3.98)

The regions of structural instability ¥<0 are presented in Fig 3.22
(crosshatched).

Now if we construct the line of the state of the system on the plane

E1> Go» each point of which corresponds to some dimensionless parameter

7, 0<t¢l, the position of this line with respect to the boundaries defines
the nature of the stability (instability) of the system for each value of 7.

3.5. Other Examples of Investigation of the Stabilizability of a Space
Vehicle : :

Mutual Effect of the Or-illations of the Fuel in the Compartments and the
Elastic Oscillations »f +he Hull of the Space Vehicle

Let us consider the sysiem of equations (3.24), retaining two additional
oscillatory elements in it corresponding to the oscillations of the fuel
in any compartment (s) and one of the forms of the oscillations of the
hull (a):
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L4 as= —agu;

‘i‘.o'}“a\'n;“{‘ Qyq = — Ayyll;

G-+ olg+oys= —agu

soista+ asdot-aig=0;
u=L (%),

a— ’ . . —
where @ =n (%0} a;, =a,+a,a,.

Let us use the following expressions for the coefficients of the system

QRS . . l‘, — 2P .
U= =y BT =T
R (M . . ——_2r .
s A R ]| B
2 A . 2P
ll:q=-——-;-{’f]a—[";—l‘R+xa_xa]]v Qyy= = 07 (Xa""xp)»

where, in addition to the adopted notation, n, is the form of the elastic
line of the space vehicle at the point of attachment of the suspended fuel
compartment characterized by the coordinate x,;

1

a= § 2 (%) %

is the apparent mass corresponding to the investigated form of elastic
vibrations; u(x) is the "running” mass of the hull.

In system (3.97), we also neglected the term ary which in the given case
plays a secondary role. The characteristic equation of the system (3.97)
will be written in standard form: ‘ .

@ (p) +L (p) 2 (=0,
where By p?) = P? (@pp! + a1 PP - ao: @, (P2 =bop' 4 i 4 bai
go=1—(acs+ syt sl

EXN)

al=w§ {2 - (a::ﬂcS-*—d;\u(l\"sJ - (1 - - )};

2
w
q

a2=m,2,cu§;
bo=auu \ 1 — (Qusse +a,40,,1-a,.a.,a, )+ﬁﬁx
vstosC qs*sq 1 Yqsthsgtivg Ay

a.a
X [ayq (— 14 auas + agssy) + Qysq)+ ——‘ff = (@ys—aya q:)};
, vu
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ay,

. 2
a a,,0qu ( W ‘}.
. _ e RN Lt 1 ——
b,.—.—_—\u'-;a‘v,,, {Z—(L;ﬂsc"‘ Qg5 s Gy (1 \) wz ! »

2 2
by =Qyywgs.

Let us introduce the following dimensionless parameters:
2

'/|=1—--:,i-; (—L-;—O——‘E‘,z_”","; '=‘5‘;
R (3.99)

. " !
[ = Jo+ o ) ) 70 Zy= )
mb 4 m n(xo) ‘ , Xg—%q
ao—_—aa; [70=b:);

=t (a}—2); py=u? [bi—agr (1 —2)ki (3. 100)

ay=wy(1—) by=wgbs (1—%)

Let us denote

where X is a small parameter.

As the new characteristic frequency let us introduce the value

u)%_—__—-—%- (m?]‘—{—- tu?) == mg(l — %) ; ma'gw;(l —-1}). (3.»101)

Considering expression (3.101) we obtain
2 * 2.,
a1=wtﬂ:; b1=“’2b:' - (3.102)
a2=w3az; by =wobz. ’

In the given case the criterion of structural stability of the space vehicle
as applied to the auxiliary oscillators s and q also has the form-

o | 4,>0 - (3.'103)
¢ (Zy, Zn k§={{(2x%-.1‘)9fﬂzz‘(.ZH'U} [(Z%—%)Z’Jrkz(;];i;
* where

n=Br Rk

5 _ZR=B) () +ae)
2 (Z5+ Z3)m (xq)

__ eaRM2 | o T / _
Y= o ;= + i Zo= ;0= Aot ;
o (m v+”‘) m’ 4+ m Xg— g u
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coordinate system,

If we neglect the inertial relations between the elastic hull and the
oscillating liquid, then the inequality (3.103) becomes the following:

V(Zy, k)= —kZ\(Z,+ 1)>0. (3. 105)
When k<0 with forward (relative to the metacenter) location of the

measuring device from the inequality (3.105) we have the criterion of
Structural stability in the case of one compartment:

Z\(Z+1)<0. o (3. 106)

The phase stabilization is achieved here for phase lead of the control sys-
tem on frequencies wg and w,. For the most standard case k>0 (the first
tone of the elastic vibrations of the system with forward location of the
measuring device), from the expression (3.105) we have:

Z(Z,+1)<0. N R (114

Here the phase stabilization of the system is achieved with phase delay of
the control system of wg and Wge

Let us return to the more exact criterion (3.103), from which we find the
functions characterizing the boundaries of the structural 3tability of the
space vehicle in the plane 21, Zy:

D___Zitl . ol K © (3. 108)
Z @+ m—yt : Zi— kit :

The curves (3.108) intersect the x-axis at the unique point Z1=-1 or 21=0
respectively. Both curves have horizontal asymptotes 29=0; for - .
Z, 0, Z%l)-’o. aZ®P =0 for k=0, and the vertical asymptotes

CLi=—119712 (curve Z§Y(2y);
Zy=+ ky~12 (curve 2§ (Z).

Obviously there are three critical value ls)f ]k] for which either the
left or right asymptotes of the curves Zz and ZZ(2 coincide:

Wl =14V bl=1-VF jt=VV = (3.109)

Correspondingly, there are six characteristic cases of mutual arrangement:
of the regions of structural stability and instability in the plane Z1» Z,
for various decreasing values of the parameter [k[ for fixed y<0,25;
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Figure 3.25. Regions of stabilizability (1), unstabilizability (2)
considering the mutual effect of the oscillations
of the fuel and the elasticity of the space vehicle
hull

For y=0.25 we have: }y=0,5; 1—V¥=V¥.

Therefore when y=0.25 the 3d and 4th cases change roles, and 5 corresponds
to |k]<1-/y.

In addition to the modulus of the parameter k, the form of the regions of
stability essentially depends on the sign of the parameter so that each
of the cases (3.110) corresponds to two versions k>0, k<O.

The standard cases are r.esented in Fig 3.25 (y=0.16). The crosshatching
corresponds to the regron of structural instability (¥<0); the absence of
crosshatching corresponds to the regions of structural stability (¥>0).

- From the performed analysis it follows that under defined conditions
consideration of the elasticity of the structural elements of the space
vehicle changes the conditions of stability of the closed system made up
of the space vehicle and the automatic stabilization system on the oscilla-
tion frequency of the liquid: in cases where phase lead of the control
system would be required for stability of the system, considering the
elasticity phase delay is required, and vice versa.
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The effect is more strongly manifested, the greater the connectedness of
the corresponding partial systems,

Longitudinal Oscillatlons of the Space Vehlcle Hull

The system of equations describing the longitudinal oscillations of the

space vehicle will be considered as applied to the case where the fre-

quencies of the natural longitudinal oscillations of the hull and the

1iquid in one of the lines are close. Omitting the indexes j and k

corresponding to them, we obtain the following simplified system of equa-
- tions:

F+ agss = awt;
§+Bog g +agss=ag; (3.110)
§+B85+ols+asi+a,,0=0;
r4a,055=0;
u=L(r)

Considering the first of the equations (3.110) it is convenient to exclude
the variable £, which leads to the system

S(] ’—"asiais)“i" mzs"}'asq.‘.]: — Aszulls
g+oigtags=a; (3.111)
r 4 a, w35 =0;
u=L{(r)
Let us consider the problem of structural stability of the space vehicle
as applied to two oscillatory elements characterized by the frequencies

wg, Wgq analogously to how this was done earlier with respect to the
oscil%ations of the fuel in two compartments with frequencies of 0y,. ag).

The characteristic equation of the closed system in the given case has the

form
Do (P?)+L (p) Dr (P))=0, . (3.112)
where Do (P)=app'+ap?tas; O, (p?)=b,p" by
Gy=1— sy~ by=—a,(Aaliuta,a,)05  (3.113)
a=(1—asa i) u;i 4+ mf; by= — a’:asaaiumgm‘?_

2
a2=m§m,.

The criterion of structural stability of the system (3.111) has the form

Zol(— - vZy) k4 Za (L —2— 1, 2] <0, (3.114)
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where ek
h \2 1({xp) U’
z=(143 )i =
l —
+ I
—— a x____l “)3 . ml
(m? 4 ney 2 (xp) - u,: O mim

n(x) is the considered form of the longitudinal oscillation; g* is the
absolute displacement of the apparent ‘mass of the liquid in the tank,
corresponding to the form n(x);: m' is the mass of the fuel in the lines;

h is the depth of the fuel in the compartment; %' is the length of the

lines; a is the generalized mass corresponding to the investigated form

of oscillations of the space vehicle hull; m0+m is the total mass of the hull
of the space vehicle and the fuel in the tanks.

Figure 3.26. T:zions of stabilizability (1), unstabilizability
o. the oscillation frequency of the hull (2), ’
anstabilizability on the oscillation frequency of
the fuel in the line (3) of the space vehicle

The relation of the indicated parameters of the dynamic system of the
coefficients is presnted, for example, in reference [56].

- Considering that by definition Zl<<y"1, where y<<l, let us simplify the
inequality, by introducing the parameters
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K
&wﬁ_1=x:l(~1<ﬁ<wk
5
g‘
[1+ (m0 4 m) 2 (xp) -
_ Z=_Z_k2_= n(xﬂ)] - (3' 115)
o ()

Thus, the criterion of structural stability of the investigated system
takes on the following form:

274 R : .

—_—(Z— 0. 3.116

oy (Z-H< (3116
The regions of structural instability in the plane Z,B are bounded by the
straight lines Z=0; Z=B and they are presented in Fig 3.26.

The opposite direction of the crosshatching in Fig 3.26 corresponds to
different signs of the first or second cofactors in the formula (3.116);
the forward crosshatching corresponds to the instability on a frequency
of wq; the return crosshatching, on the frequency wg; the absence of
crosshatching corresponds to the structural stability (stability with a
phase delay of the engine).

Increasing the parameter B leads to successive disturbance of the conditions
of phase stabilization: for Z<0 first on a frequency close to wg and

then on a frequency close to Wgs for Zz>0, on the contrary, which is
illustrated by the phase-amplitude characteristics of the open system in
the vicinity of the characteristic frequencies in Fig 3.26. The line g#=0

is a special line.

In this chapter a study is made from the point of view of stabilizability

of the mathematical models of space vehicles for certain standard conditions
of motion in the active segment. The equations of motion which are basic
for the analysis were borrowed from the monograph by B. I. Rabinovich [56].

The study of the stabilizability of the spacecraft in all cases is .the
study of the effect of control in the stabilization channels (yawing,
pitch, heel) on the stability of the additional oscillatory elements (the
fuel oscillatiouns in the compartments, the elastic vibrations of the
structural elements, and so on).

The analysis shows that obviously there 1s no compositional layout of the
base vehicle or standard conditions of its movement in the active section
for which the problem of stabilizing the object will reduce to phase

stabilization of the spice vehicle by insuring lead (or delay) of the phase
characteristic of the control system in the investigated frequency range.
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As is obvious, frequently more exact tuning of the control system is
required (in the case of structural instability of the object), sometimes
it 1s impossible in general to stabilize the object by adjusting only the
"phase" of the control system (in the case of dynamic instability of the
space vehicle).

Accordingly, the following two areas of investigation arise:

The study of the possibility of optimizing the compositional layout of the
space vehicle in the design phase in order to crease an object which is
improved in the dynamic sense not imposing increased requirements on the
structure and characteristics of the stabilization system.

The investigation of the possibility of amplitude stabilization of the
structurally unstable space vehicles with the use of such effective pro-
cedures as the introduction of dampers, simultaneous tuning of both the
phase and the dynamic amplification coefficient of the control system on
defined frequencies and also efficient solution of the stabilization
algorithm of the object. These two areas determined the group of problems
investigated in the following chapter.
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CHAPTER 4. APPLICATION OF THE THEORY OF STABILIZABILITY TO THE PROBLEMS OF
SPACE VEHICLE DESIGN

4.1. Investigation of the Structural Properties of the Designed Space
Vehicles

General Remarks

This section contains a discussion of the algorithm for amalyzing the
structural properties of designed space vehicles considering the variability
of mass caused by burning off fuel. The study is made as applied to the
oscillation mode of the space vehicle relative to the center of masses with
the angular stabilization system included Uus). '

A study is made of the classical case of a two-tank compositional space
vehicle system providing for the placement of a two-component fuel (oxidizing
agent and combustible fuel component) required for operation of the rocket
engine. Fig 4.1 shows an example of a standard compositional layout for
such a space vehicle, In the given case the tank with the oxidizing agent
has a spherical shape, the tank with the combustible fuel component,
toroidal. Their placement with respect to the longitudinal axis is

- characterized by the coordinates xg1, Xg2. In addition, in this figure

- the coordinates of the metacenter (xg) and the coordinates of the location
of the controlling engines (xp) are denoted.

Hereafter the assumption will be made that the fuel tanks have arbitrary
(axisymmetric) configuration.

As was demonstrated in the preceding chapter, each combination of character-
istic parameters of the space vehicle B, v, L, ¢, k corresponds entdirely to
the defined configurations of the boundaries of the regioms of stabilizabil-
- ity in the 23, Z, plane. It is characteristic that for all the vardety

- of compositional systems of the space vehicle the number of types of curves
limiting these regions is finite (straight lines, ellipses, defective
hyperbolas).
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Standard diagram of the placement of the fuel

N Figure 4.1.
tanks in the hull of a spacecraft:
1 -- combustible fuel component; 2 —- oxidizing agent

Let us introduce the parameter t=t/T into the investigation, where t is the
dynamic time of the active segment of the space vehicle and T 1is the total
time of the active segment of the space vehicle (0<t¢l). Then the boundaries
of the regions of stabilizability in the 21, Z5 plane can be considered as
ections of the corresponding boundary surfaces in the space T, 21, Z
1%, where T# 1s the appropriately selected time T (Fig A.%,

proj
on the plane =
a, b.
—
71
ST
'\4( "N NI fZ
. ™,
DNy AN
N
N 0 X
& L
a

Figure 4.2. Regions of stabilizability of the space vehicle
(see Fig 4.1) with toroidal and spherical fuel

compartments:
a —- the space of the parameters Zj, Zy3, 13 b =— in the plane

of the parameters Zl, Z2
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Let us fix the values of 2Z1(0), Z5(0), In the space 2y, Zy, T let us
obtain a line I' of the states on the space vehicle determined by the
parametric equations . ‘

Zy=Z\(1); Zy=2Zy(v),

the position of which with respect to the reglons of stabilizability
provides Informat fon about the dynamic propertics of the space vehicle In
the active segment.

In many cases, the situation is such that on variation of the parameter T
the boundaries of the regions of stabilizability in the Zj, Z; plane are
in practice stationary, and the variation of the position of the
characteristic point I'[Z(t*), Z2(1*)] of the space vehicle with respect
. to the regions is comnected only with its movement along the curve T (t)
for O¢1<l. 1In this case the problems of the comstruction of the region
and the characteristic curve I'(t) are separated, and the possibility is
presented of estimating the quality of the various compositional systems
in general form.

Thus, on the whole the problem of analyzing the dynamic properties of a
space vehicle reduces to a geometric problem ~- the investigation of the
configuration of the regions of stabilizability and the placement of the
characteristic lines T'(r) in space (27, Zg, 1) or in the plane (le 22)'
Here it 1s expedient to adhere to the following sequence of operations:

Calculation of the dimensionless parameters of the object for the
characteristic points t=0; T=T{seees =113

Calculation of the boundaries of the regions of natural and structural
instability of the object » . -
D(Z‘, Zz, T)=0, W(ZIY ZQ, T):O

in the space of the parameters Zl, ZZ’ T; here it is necessary to isolate
the segments (Tg, Tg4+1), the boundaries of which correspond to vanishing
of one of the parameters B, c (for B=0, c=0 the topological structure

of regions of structural instability varies);

Calculation of the time function D(t), ¥(1) and investigatioh of the sign
of these functions for 0gt<l;

Structure of the projections of the lines I'(t)={Z3(t), Zp(t)} and the
regions of stability on the plane t=const.

Analysis of the Stabilizability of a Space Vehicle in Various Design Phases
a) General Data on the Object are Known

Let the following be given:
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GCeometric characteristics: shape of the fuel tanks and their arrangement,
elongation of the object, location of the servoelements, and so on.

Physical characteristics: density of the fuel components, mass distribution,
alignment, moment of inertia with respect to the center of mass, and so on.

Let us also propose that the dimensionless hydrodynamic coefficients are

known which depend on the form of the tanks and depth of filling them with

the fuel: 2

5, = M=—1, di(i=1 2
A i

For the majority of configurations which are widespread at the present time
these coefficients have been calculated and published. In other, more
complex cases, they can be calculated by approximate formulas.

The characteristic parameters of the object Z3, Z,s k, B, Y, L, C 3TE related
to the geometric and physical parameters of the ogject by the following
expressions: - :

Z!=% [RO;’E:JI‘XG—JCO;]? l=l/ri?il" H

m4+m'
o7 3
1 a3M1201Rpy Ro1
¢== VRE e 5 6=
XG—- Xp qlM'«‘-QOQROZ ldl

2 2
L 1 ( "2)
Y=M — (= | 14—
"ngRg] ky + “? [

where on the basis of the notation that has been adopted Rpi, Xqi are the
characteristic size and coordinate of the characteristic point of each of
the tanks; pg4 is the density of.the fuel components in the i-th tank;

Xp is the coordinate of the point of application of the control input;

x; is the coordinate of the metacenter (all the coordinates are reckoned
from the plane of the tip of the nozzle of the sustainer engine where the
origin of the coordinate systems tound to the object is placed).

As the first example, ’et us consider a‘ spacecraft, the two fuel tanks of
which have a form clos. tu cylindrical.

Let us set:
- __Xn - Xp2 - _*p 2
X —_——'—:=],45; X ='—'=3,2; X =——=0,37; ——’"——_-.:2, .
%" Ryt " Ry " Ry 0

The other initial data, which are a function of the depth to which the
tanks are filled with fuel depending in turn on the time t=t/T (where T is

i\  the total time of the active segment) are presented in Table 4.1. The

results of calculating the patural and structural stability of the space
vehicle are presented in Table 4.2. As follows from these data, the
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dimensionless parameters c(t), k(t), y(t), t{(t), B(Tt) and, consequently,
the boundaries of regions of dynamiq instability
D{Z;, Zy k(7), Y{T) ¢ (53 (1)]=0;
¥ [Zy, Zyc(x), k(T), ¥(7) L(v), #(0)] =0

are slightly deformed in the investigated time interval 0.1<t<l. Therefore
in accordance with the proposed approach let us consider the projection of
the regions of stability and the characteristic line I'(t) in the space

21, Zy, T on the plane 71=0.3. As is obvious from Fig 4,3, a, the plane

21, Z5 is broken down into three types of regions by the set of curves
D(Z1, Z)=0; ¥(Z1, Z3)=0:

- The regions of stabilizability of the object ¥(t)>0; D(1)>0. The
stabilization of the object in the active section is possible by rough
adjustment: of the parameters of the automatic stabilization system:

s@ﬂ“hﬂ:mmhj=h2;

Table 1
T 711 M 1 E—I Q1 Ez Mo c—g !5) —d% 0% 1
0,1 |1,2011,43|1,2813,96|1,60|1,43]1,883,95 1,83 1,84 2,40.
0,3 |0,98]1,41|1,07{3,9{1,33|1,43|1,51 13,96 1,82]1,84|2,63
0,45 0,80 |1,39{0,88 3,9 1,06|1,42|1,16|3,96|1,801,83 2,86
0,75|0.62{1,34|0,75|3,96|0,80(1,3910,88)3,961,72|1,80 /3,15
0,9 {0,45|1,20|0,723,9|0,33|1,1810,723,9 | 1,55 1,66 3,57
1,0 |0,25]0,89|0,88|3,96[0,300,8910,88|3,96 |1,15]1,15]4,2¢
Table 2
T A Z, ¢ K | 4 3 Yo | W Yo |signWisign @
' 0,1 | 0,80 [—0,62! 0,44 2,02'0,33 0,018 0,09—0,49] 1,01 | — | "+
0.3 | 0,79 [—0,43] 0,49 | 2,05 | 0,32 | 0,036} 1,10{—0,48 1,02 - +
0,45 | 0,81 |—0,24 0,54 | 2,07 { 0,29 | 0,067{ 0,12/—0,47} 1,04} 4 | -
0.75 | 0,86 {0,025 0,57 | 2,10 0,28 | 1,130 0,16{~0,45} 1,09 } - +
0,9 | 0,87 0,13/ 0,61 |2,16(0,27 | 0,160, 0,20|—0,45| 1,11} + +-
1,0 10,9 | 0,35/ 0,60 12.02/0,3i | 0 —0,25|—0,43] 1,001 ~+ -+

The region of structural instability of the object ¥(t)<0; D(1)>0
(crosshatched). In order to insure stability of a closed sysiem "fine"
tuning of the parameters of the automatic stabilization system is required
on the basis of the contradiction of the requirements on ¢(w) on
frequencies of w=0y; w0y}
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The regions of dynamic instability (double crosshatched): ¥(t)<0; D(t)<0.
The stability of the closed system cannot be insured by selection of the
parameters of the automatic stabilization system of the adopted structure.

This case must be considered unfavorable because the closed system made up
of the space vehicle and the automatic stabilization system is unstable.

In order to eliminate instability one of the fuel tanks must be equipped
with special damping devices insuring the required decrements of the fuel
oscillations in the tanks at the beginning of the active segment 0<t<0.3
which depend on the specific parameters of the automatic stabilization
system,

In the initial steps of the projection it is necessary to also consider the
possibility of rearrangement of the object, eliminating the structural
instability.

b) The coefficients of the equations of the disturbed movement of the
space vehicle are known.

The characteristic parameters Z1, 2Z,, k, B, v, L, ¢ have been calculated
in the given case by the formulas

Zl_‘— —_— -W H Z2 S:‘l‘al.!l .
! a,, et
B s,z (TN

Y=@zs,85,z; C—-—

2 ’
Lo}
2
%
—1 4= .
= ULy g tmnlaz 1 8u
P 0= L2
az.r.a:,z aZS.a:,z ! aqm

The criteria of dynamic stability of the space vehicle and its structural
stability have the following form, respectively

D=a{—4am,>0;
‘I::(( ib2"“ b](lz) (aobl —albo)— (aObZ_ bOa2)2>0’
where ‘ Q=1—p+pyn bp=Il—py;
G =2—prt oty =2—pytps;
ap==14pr+pg by=ps.

The parameters uy are related to the coefficients of the system of equations
of disturbed motion (3.20) by the following expressions:

py= s, ezs, -+ Bs,2, 85, + @ys @5,y Qs Bast
Po={(@s,4@ssz As,4s,z2) (@ys,B2sy — Qrs,Bys,)s
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- a

= — g;: [a‘{"na-ﬁz + a"r'sla-‘a‘]:
1

. o2
- p.3=(——- 1 +-u—§2—) (1 —-as‘qﬂ‘u;,—as.zau.);
1

()
'1.4—- ‘ﬂg 02 $12%ys, |y

1

. a ’
- Pop== s, zs; - Gsyalzs,— 225 (@5,2004s, + 85,2043, );
Qg

2
L) oa
|l-5=(-— 1 + ':?") (] —Qs,20zs, ".‘E:;ul a:,za#n);

As the next example let us consider the spacecraft for which the coefficients
of the equations of undisturbed motion are presented in Table 4.3.

Table 4.3
] B ah’{‘ Qsyz a’:‘i’ C Qg2 a@s. Qzs2 a'Wl
0,05 3,35 | —1,54 3,88  —1,5¢4 0,01 | —0,023 0,002
0,50 —5,49 | —1,54 | —4,56 | —1,5¢ | —0,016 | —0,033 | —0,003
0,90 —16,74 ] —1,50 | —16,53 [ —1,54 | —0,072 | —0,052 | —0,013
T Qzst Gau 2yy 2z | of
0,05 —0,004 —5,18 -1,00 | —10,37 9,32 19,12
0,50 —0,006 -~7,30 .| —1,06 | —14,61 13,14 26,95
0,90 —0,010 —11,47 —1,83 | —22,94 20,17 42,38

The results of calculating the stabilizability of the space vehicle are
i presented in Table 4.4 and Fig 4.3, b.

Table 4.4

vz ll Zy ¢ k 4 B Y M ny |sign W[signD

0,05 |—0,35|—0,30( 0,72 | 0,09 | 0,07 |-14,02| 0,07 | 0,01 {-13,12
- 9,50 { 0,33 0,42| 0,82 | 0,09 | 0,06 |—9,96] 0,10 | 0,02 [—9,06
v,9 | 1,19 1,23/ 0,67 | 0.09 | 0,06 |—6,65| 0,16 | 0,02 |—5,76

+++
+++
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As is obvious, in the given case the boundaries of the regions of stable
instability of the object are close to straight lines (which is explained
by the smallness of the parameter B).
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Figure 4.3. Regions of stabilizability (1), umstabilizability (2)
of the space vehicle with cylindrical fuel compart-
- ments:
a —- for example 1; b -- for example 2

The object is stabilized in the entire active segment, which in the presence
of lead of the automatic stabilization system in the frequency range of

04, i=1,2 indicates stability of the closed system in the generally

accepted sense.

4.2, Stabilizability Criterion as the Quality Criterion of the Compositicnal
Layout of a Space Vehicle

Study of the Effect of the Compositional Layout of a Space Vehicle on
Its Structural Properties

Let us return to the investigation of the possibility of the projection of
structurally stable objects by selecting the corresponding compositional
system. The basic problem which a“ises here is the problem of the effect
of the compositional system, .ne form and the location of the fuel tanks,
the alignment, the form and location of the control elements, and so on
on the structural prope “ies of the spacecraft.

This problem is partially investigated in Chapter 3 where, however, primary
attention was given to tie configuration of the regions of stability of

the space vehicle as a function of the values of the characteristic
parameters of the object.

From the practical point of view it is necessary to study also the mutual
arrangement of the characteristic line I'(1) and the corresponding regions
for the standard configurations of the fuel tanks.

Each compositional layout of the space vehicle is characterized from the
ponit of view of the discussed method:
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By the regions of instability of one of several possible configurations;
- the location of the regioms in the 23, Zy plane, which depends on the
specific characteristics of the object;

A characteristic line T'(1) given by the parametric equations

lell (T), ZQ=ZZ(T)-
where T i1s the current time of the active segment.

The problem of analyzing the dynamic properties of the spacecraft reduces

to a geometric problem -- the investigation of the mutual arrangement of
. the line I'(1) and the regions of dynamic stability corresponding to the
given composition.

As an example, let us consider a spacecraft with liquid-propellant rocket
engine having spherical, cylindrical, conical or toroidal fuel tanks in
the following combinations: sphere-sphere; sphere inside sphere, cylinder-
cylinder; torus—torus; torus-sphere; torus-comne.

The example fuel tanks correspond to the required mass ratio for the fuel
vapor including hydrogen tetroxide N204 as the ozidizing agent (density
po=1.45-10‘3 kg/m3), and aerosin-50 as the combustible fuel component
(the density p=0.9:10~3 kg/m3).

Assuming that the mass of the fuel at the time the sustainer is switched
on i1s half the mass of the spacecraft, it is easy to calculate the

. characteristic parameters k, vy, B, £ in the form of time functions of the
active segment 1. Let us assume that the control of the space vehicle
is realized by a pair of forces collinear with the longitudinal axis of
the object, and let us consider the asymptotic behavior of the curve defined
by the equations

1 — v— ’
Z, =m [ROici (V) xu—%aq )

for 10 and 1-+1.

Let us consider the parameters corresponding T1=0 and 1=l and let us
assign the indexes 0 and 1 respectively. Setting hji(7)»0 for t>l, we have

2
ST+ T Qo0g:Ros .
— . =X+ E —_—
ly= mo 4t *0o== " = mom

| | o f
e L

- 1 = = 1
—ho +’—'w§’<cl(l<h01+’§? .
i
Let us proceed directly to the selected compositional diagrams.
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1. The spherical tanks (the index "" corresponds to the tank with the
oxidizing agent).

v 1
2p=— (Xg,— Xu)i  Zp==— (Xg,— Xo;)-
1y L

In the given case the parameters Z; are positive for the "lower" position
of the tanks with respect to the metacenter and negative for the "upper"
position. The relative position of the line I'(t) and the boundaries of
the regions of stability in the case of a body with intermediate position
of the metacenter is shown in Fig 4.4, 2.

] E\\Q\XF:MI( Y [ M_#‘_z_g Jor-zﬂ
| e 5 T Fer
- * L_]%({‘/ 2 “‘:’“f‘" ’
R AT 3 /
Oﬁ ‘f \ 2
, T8 i
E xé Vi bt, v~7 //z
Y AN
;7_@ 7=0 | _gg'zﬂ' %\ T/'-o'
Vw1 | | Zi
d e f

Figure 4.4. Mutual arrangement of the characteristic line
under the regions of stabilizability for the
space vehicles of different compositional systems

2. The spherical tank with the oxidizing agent in which the smaller size
spherical tank with the combustible fuel component is placed (the index "1"
corresponds to the tank with the combustible fuel component, Fig 4.4., b):

1 1
- Zm':To' (xe, + %o Z"=I—L (*a, — X )i

i L C
Zp=- 70' (Xa,— Xo2)s Zn= n (%0, ~ X2 — Roxclo)-

3. Cylindrical tank with spherical bottoms (in cases 3-6 the index "1"
corresponds to the tank with the combustible fuel component, Fig 4.4, c):
1 - R 1
Zio=—'(xoo‘“xo:—Rozh1+ _g); Zy=—( 0, — Xot)-
b & h (i=12)

4. Toroidal tanks (Fig 4.4, d):

1 T -
Zy= T (%6, — X0 — RoCio) Zy= [L (xa, — X0, — RyCio)
1 .
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5. Toroidal and spherical tanks (Fig 4.4, e):

=~ R
Zm:‘—‘"l—‘ (xg,— %0 —RuCuo); Zy= "l—_nzl ;
lo 0y
1
Z'gg=l (Xa, — Xu)s Zy=— (X0, — Xoa)s
lO ll '
6. Toroidal and conical tanks (Fig 4.4, f):
1 - 1 ’ ]
Zyy= m (%G, — X0 — Rmcxo); Zy= -11_ (XO. — oy — Rmclo);
0

1 = 1 R
Zy= - (x0,— % —RopeCu);  Zy= o (Xg,— %p2)
0 1 .

The analysis of the mutual arrangement of the lines I'(t) and the regions

of instability for the investigated compositional systems of Fig 4.4
indicates that the dynamic properties of the space vehicle essentially
depend on the configuration and mutual arrangement of the fuel tanks. In
particular, the space vehicles having at least one toroidal tank (in general,
the bi-connected cavity) cannot be made structurally stable in the entire
active segment. In practice this means that the use of the toroidal tanks
predetermines the necessity for structural development of the space

vehicle, namely, the installation of spatial damping devices to insure
stability of the equipment in the nonstabilizability segments.

The space vehicles having spherical, cylindrical and other analogous tanks
of the singly connected cavity type can be both stabilizable and unstabiliz-
able in the active segment. The result depends to a great extent on the
alignment of the object. Therefore this problem requires further investi-
gation. ‘

Optimization of the Structural Parameters of the Compositional System of the
Spacecraft in the Early Stages of Design

Let us first consider the problem of the effect of the alignment of the
space vehicle on its dynamic stability and the corresponding possibilities
for optimization.

It is known that the position of the center of masses of the flight vehicle
determines its static characteristics. From the analysis performed .above it
follows that the dynamic characteristics of the space vehicle also essen-
tially depend on the alignment.

= Let us congider- this problem from the point of view of the possibility of

- improvement of the dynamic characteristics of the space vehicle, taking
xp as the variable parameter. As the object of investigation let us take
the space vehicle with spherical fuel tanks.

In the given case we have
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Z, (T)=;'2—v) [xg (W) —xuls 22 (")=,'%5[-"a (%) — Xog)-

Excluding the coordinate of the metacenter from the two equations, we
obtain

zz=zl—x__—-—°2l'(; )"'ﬂ .

In the case of %(t)=const, the characteristic line is a straight line
parallel to the bissectrix of the coordinate angle Z10Z5. In the case of an
increasing function £{t) the line T(t) deviates from the straight lines ‘
counterclockwise; for a decreasing function, clockwise.

The coordinates of the initial points of the curve I'(t), as is obvious from
formulas (4.2), (4.3), essentially depend on the position of the metacenter
of the space vehicle, related to the coordinate of the center of masses of
the space vehicle by the equation -

Q2 Ry
x0=xr+ 2 L
T=1

mi+m
' 95 10 15
N | 1 2, G ‘>
] 4 )
5 z 5 7=10 Z 7
é”£-%—~1 g5 //%’ 7 >
(o0 X 7
> c/z:=a | Q// I/y /
< Fies 1 2 J Ig o= 0NZ ‘é
=10 =
~1 1S 17 z ”Z’-ﬂ
? /U’l” ~
44 7=0Z
- z=0 | é , : »
z 2 b *

Figure 4.5. Optimization of the dynamic properties of the
sp- e vehicle by varying the alignment (a) and
mui al position of the fuel compartment (b)
The following cases are possible:

v

The "rear" aligmment xg(T)<Xg1<XQ2 (the characteristic lines depicted in
Fig 4.5, a, curve I); -

The "intermediate” aligmment xq1<xg(t)<xqgy (curve II in Fig 4,5, a);

"Forward" alignment x01<x02<xG(1:) (curve III in Fig 4.5, a).
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As 1s obvious from Fig 4.5, a, the position of the metacenter and, conse-
quently the center of masses can be used as the controlling parameter for
variation of the dynamic properties of the space vehicle within the frame-
work of the selected compositional system. In the given case in order to
eliminate the structural instabillity, it is necessary to shift the center
of masses of the space vehicle to the extreme upper (lower) position.

Analogous arguments can be made also for other compositional systems, in
particular, in the case of cylindrical tanks. Let us again return to the

first example and section 4.1 in order to obtain specific recommendations .
with respect to the variations of alignment of the object eliminating the -
unstabilizability of the object (see Fig 4.3, a).

In the case of cylindrical tanks and sufficient depth of the liquid hji22Rpq,

which is satisfied for the investigated time interval of unstabilizability LN
of the object (0<1<0.3), the dimensionless parameters, according to the

expression given above, have the form

Zi="11" [Xg—xu+0,54Ry]), i=1, 2; -

'=0; k=—0ﬂ; =0,54-&i; == ! .
¢ . Qo1 ¢ ! *g—*p

The angular coefficient of the straight line Zy=njZ; is equal to k and does
not depend, therefore, on time.

In order to derive the curve T'(t) from the region of structural instability
crosshatched in Fig 4.3,a, obviously it is necessary to decrease the value

of Zgg. It is easy to see that the required effect will be achieved 1f

the center of masses of the system is shifted forward by the corresponding

amount, keeping its radius of inertia invarilant (curve II).

Thus, the performed analysis indicates that there is a real possibility for
improving the dynamic characteristics of the closed system made up of the
space vehicle and the automatic stabilization system by selection of an
efficient compositional system and alignment in the drawing stage.

The criteria obtained for natural and structural stability can be used as
the quality criteria of the compositional system if the corresponding
functional ‘is appropriately introduced.

Let us discuss one of the possible formal systems.

- Let us introduce into the investigation the functions of the dimensionless
parameters Vg (k=1,2,...,r) of the object of control D(vy,...,Vp),
¥(vy,..+5Vg), having the property that the equality ¥(vy,...,vg)=0
corresponds to the boundary of the structural stability, and the equality

D (v1,...,vg)=0, the boundary of the natural dynamic stability of the
object of control.
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The parameters vy of the spacecraft are determined primarily by the
geometric configuration of the fuel tanks of the spacecraft and their
position and also the ratio of the mass densities of the fuel compomnent.
These parameters are different; the most varied geometric configurations
are possible: cylindrical, spherical, toroidal, and so on in all possible
combinations.

Let us assume that the parameters Vi, in turm, are functions of the
parameters pj (i=1,2,...,0), qj (i=1,2,...,m) and satisfy the equation
o< <P ((=1, 2,..., n);

G<U<G+0e) (=1, 2,0, m) *-1)

where quo are small positive values, the squares and higher powers of which
can be neglected. Thus,

vk=vk(p1l Pare-es Pas Graeees q,,,), k':], 2,.... r.

Then let us assume that there are values of vlo for which the following
inequalities are satisfied:

D ¥3,..., ¥1)<0;
¥ (v3, ¥9hery ¥1) L 0 .

Let us introduce the linear coupling of the functional of the following
type into the investigation
1
1 -
I=)\1 gD(vh_"' vr)al(t)d‘f+)\2§ L\ (Vp"-, VS)&!(t)dfy (4- 3)
. ) i

where A1 and AZ (0sA451, i=1,2) are fixed weight coefficients not vanishing
simultaneously, the ratio of which depends on the specific problem:

4.2)

(__Mu’D>0;a(ﬂ_PbrW>m
' “{\forogo; P 1for ¥ < 0.

The functional I chara:terizes a "generalized distance" of the point in the
space of the parameter. of the object to the boundary of the regions of
stability in the preser 2 of natural and structural instability.

Let us formulate the 1ollowing extremal problem: let us find the maximum

in the set of parameters pj (1=1,2,...,n) and the minimum of the correspond-
ing peaks in the set of parameters gy (3=1,2,...,m). This corresponds to
the choice of structural parameters of the object most advantageous in the
sense of the generalized distance to the boundary of the region of stability,
minimization of the degree of instability and the best choice of the
operating parameters (the guarantee of the calculation "in reserve").

The smallness of the deviations of Qjo insures the possibility of solving
this problem in three steps:
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Comparison of the various compositional systems of the spacecraft on the
basis of analyzing the corresponding region of stability in the space of
the defining parameters and the rejection of unfavorable versions;

Maximizing the functional I for the selected configuration of tanks and
values of the weight coefficients A1 and A, for the fixed

=g (=1 2., m);

Minimization of the maximum values of I corresponding to the optimal
= 0 =
values found for py=py (i=1,2,...,m).

Let us explain the discussed system in an example.

Assunming that the compositional system of the space vehicle is selected

and the geometric configuration of the tanks is fixed at the same time,

as the parameters v, let us take the coordinate of the center of the masses
of the "dry object" xpg and the coordinates of the characteristic points

of the tanks, for example, the poles of the bottoms xpj and xg9 of the
fuel tanks, and as the parameters gj, the densities Po1* P02 and the
initial depths hyg, hyq.

The problem consists in selecting the values of these parameters giving
the solution to the problem for the "minimax" of the functional I under
the conditions: ‘

ap < X0 < for 9y < X < B
ol <oy < o - el 4.4)
B < by < B - ARED

BT C) 0} Apl0
whereug, Bo Gm»@m-ﬁ&' hor's oo’y AR pust be considered given constants.

The most difficult is the first part of the problem inasmuch as the
variations of the parameters xpg, Xgj, Xy are not assumed to.be small.

As an illustration let us comsider the example of its solution for A;=0,
Ag=1. The dimensionless variables Zo=l/c, 21, 22 corresponding to certain
rated values of the parameters x*;, x%*pqp, x*po and also the values of

§ as a function of the parameter are presented in Table 4.5,

Table 4.5 Table 4.6
L Zy | 4 Z, |sign ¥ L Zy, | Z, Zy |signD)
0 2,437| 0,827} —0,868 | + 0 2,364 0,922| —0,914 | +
0,2 | 2,386} 0,838 —0,809 | + 0,2 | 2,380 0,935 —0,870 | 4
0.6 | 2,234 0,803 —0,701 | — 0.6 | 2,229] 0'907| 0,796 | -
1,0 | 3,109{ 0,645 —0,642 | — 1,0 | 2,153 0,747} —0,760 | +
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Let us assign the following form to the inequalities (4.4):

- 0,600 < o < X Xor K p < 1,203 0,800 < X0 < 1,135%.

The realization of the process of random search on a digital computer leads
to the following values of parameters XrtQ, Xpj: Xgg° maximizing the given
functional: x=0,97xy, Xp=1,16x0, X,0=0,87x%. The dimensionless
coordinates zg=1l/c corresponding to the values; Z1, 22 and the functions Y
are presented in Table 4.6.

In Fig 4.5, b we have the lines I'(t) corresponding to the initial (Table 4.5)
and improved (Table 4.6) versions of the object of control.

- From the results of the calculations presented in Table 4.6 and in
Fig 4.4, b, it follows that in the given case it is possible to make the
space vehicle structurally stable in the entire range of variation of the
parameter T, increasing the distance between the fuel tanks and shifting
the center of masses of the dry object.

4.3. Stabilization of Dynamically Unstable Space Vehicles (Calculation
of the Damping Coefficients and the Parameters of the Automatic Stabiliza-
tion System)

General Remarks. Examples

Let us consider the system of equations of disturbed motion of the space
vehicle of classical design in the form

(mo-F m) z+Nsi+ AoSa+ Ph=b,, 1
(0 1) 54 21 Mo = bt
m (e Faisi)+- M2+ b =0;
. ] (:‘:2 + t‘:2"25.2'{‘ Ggsz) + 7\2.?:' + )\02‘.1’.= 0;
w=hyy+ ks
ko()=Re[L (io)]; & ()=Im[L (io)}s

(4.5)

Let us write the charmcreristic equation of the system (4.5), setting
u(t)z0 and considerity smallness of the coefficients ei(i=l,2):

D= [ — () sl e —va) e (1—vdl A+
+ 2 [2 — (v o)+ Viet ve] PP {21 (14 v2) e (1410} P+
ot [1 4 viet vae] =0 (4.6)

- Let us simplify the equation (4.6), dropping the factor p4 in equation
(4.6) corresponding to the zero roots ofthe equation ¢.=0:

P Fr e pbe=0; - @7
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here

f==sl_v2+"l(1—y1). f— x'{‘vgc“l"fl(l -I—‘VK) o2

1— (i+v)+vs' L= v 4 (1 —vy) (4.8)
_2_(V1+V2)+V1(+V2:_ b L4V -+ Ve
I—(+v)+vs 1— (i +v)+vs '

N=-2; e=g;
D
4 H A3 oA

V= 1 01 : v 2 + 02 :
Commtm) C om O+ ) po(m0+m) g (J0+)
: : A P
) W— o P m=____*921_.,__(__);

p(JO+ 1Ym0+ m) \ 02 2 (m0 4 m) (JO+4- 1) \a?

)= (Rothg — Mgzh)?
i (m -+ m) (JO+ 1)

Let us begin with the examples illustrating the characteristic influence
on the stability of the spacecraft of the dissipative forces caused by the
oscillations of the fuel in the compartments of the space vehicle. Let us

take the following numerical values for the coefficients of the system
(4.5).

A. Space vehicle with cylindrical fuel compartments:

M P IS Y. VL PR SR— 7 .
Mo 0002 i 1,54 —e

Mo 00281 M 15— 14,75,

B 0.0231; mo+m L T " @4.9)
Mo00115  ML—68s  o—=—3T64

1 !

de _ _.0,00825; = —6,164; of=di.

B2 AL ‘

R. Space vehicle with toroidal fuel compartments:

Mo 0,884; — M — .-0,305; —2—— —0,363;

[ mo4-m mo4-m

de 0808 Mo 0,193 —___ _1,680;

2 —0,808; i 0,108; — 1,680; o
ot __0369; At _0,407; B —20,0;

™ ! Jo4 mo 4 m
Ao 0,065; 10):?-21 =0,611, o =15,20;

1203

o§= 13,90.

The roots pj=o4+iu; of the characteristic equation (4.6) close to the

partial freguencies of the fuel oscillations o7, oy calculated for the
various decrements of the oscillations
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are presented in the tables 4.7 and 4.8 for examples A and B, respectively.

Table 4.7
, U] b P P PP
0 0 --0,03854i7,1079 0,03854i7,1079
0,002{ 0,05 —0,07964-i7,0963 0,01844-47,1194
0,05 0,002 —0,0814447,1196 0,0182+:7,0961
0005 | 0,05 —0,0983%i7,1083 —0,0217 17,1071
0 0.1 —0,1303£i7,0807 0,0133£17,1242
0,1 0,1 —0,1582+i7 1082 —0,0809+i7,1057
0,1 0 - 20,13494i7,1236 0,0130+i7,0913
Table 4.8
3 3 128 ;l P2, ;2
0 0 —0,412+i3,229 : 0,413+i3,229
0 0,25 —0,530+i3,281 0,3304i3,171
0 0,50 —0,674 +i3,313 0,2754i3,122
- 9 1,0 —1,005+i3,310 0,208 +13,056
0,25 0 —0,672+i2,978 0,318 13,456
0,50 0 —0,984+i2,784 0,276 +i3,578
1,0 0 —1,628 4i2,338 0,213 43,692
0,2 0,2 —0,667 +i3,030 0,224 43,386
0,3 0,3 —0,8094 2,966 0,145+i3,744
0,6 0,6 —1,248 +i2,707 - —0,0804i3,554
- The calculation data make it possible to note the following.

1. 1In the absence of controliing [u(t)=0] and dissipative forces
[el=ez=0] the space veh'cle is dynamically unstable -— the roots of the

equation (4.6) have pos.:ive real parts, p=0.0385+17.1079 (version 4),
p=0.4120+i3.2290 (versio: B). .

2. The stabilization o:i the space vehicle is not insured by damping the
fuel oscillations in any one of the compartments even with a significant
increase in the corresponding decrements to the values of ¢=0.10
(version A), 6=1.00 (version B).

3, The symmetric damping of the oscillations in each of the compartments
permits us to insure stability of the space vehicle for comparatively small
decrements of the oscillations of the fuel components: §;=8,=0.05 (for
version A), Gl=62=0.60 (for version B).
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Thus, the preliminary analysis of the effect on the stability of the
spacecraft of the dissipative forces leads to the results greatly resembling
the conclusions obtained for a model of a double pendulum investigated in
Chapter 1. Therefore the problem of the stabilization of the dynamics

of the unstable spacecraft needs more detailed Investigated, just as the
mentioned model, also calling on the control system and stabilizing factor
(the automatic angular stabilization system).

Investigation of the Regions of Stability

First let us consider the problem of the effect of the dissipative forces
on the region of dynamic instability of the uncontrollable space vehicle
(in the Z3  Z; plane). )

Let the following load be such that the system (4.5) will be at the
stabilitary boundary for eq=ej=0, u(t)=0 (the existence of this boundary
has been established in the preceding section). Here b=a? and the
characteristic equation -

pr2ap2+b=0 (4.9a)
has a multiple root p2=-a.
Let us investigate the behavior of the solutions of equations (4.9) near

the investigated stability boundary. Since all of the coefficients of
the equation (4.9) are positive, from the four Hurwitz inequalities

Ay=f>0; b= f (2a—0)>0;
by 2200 b Ay P20 —0—0) (4102
only the inequality 7
Ay=f?(228—b—62)>0. (4.11)

is nontrivial.

It is easy to see that for b=a2 the inequality (4.10) is not satisfied:
By=—f2(0—a)? g0 (4.12)

(the case 6=a_ will be considered special). As is obvious from the
expression (4.10): :

B0 B g Mg
A1>0| A1>Ol A2<'A3> *

therefore the characteristic equation (4.9) has two roots with positive
real parts Rep. It is easy to find these roots in the vicinity of the
value of 0=a. Let us set 6=a(l+§), where & 1s small. Then with accuracy
to the terms of second order of smallness with respect to §:

=2 21iVa RIPYR TR
Pra 2foilVa(1+25 Bs), . (4. 13)
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the other two roots:

-1 )\ , svafi—LatLse
pu=— (F+E) £iVa(1-5 o4 #).
In the case of 6=a (8§=0) we have:

Pa==+iVa; p&4=—%f-_+_-11/&. (4.14)

Thus, from the expressioms (4.12)- (4.14) it follows that the introduction
of the small partial damping into the investigated nonconservative system
on the stability boundary either converts it to an unstable system or
leaves it on the stability boundary. The result is determined by the
relation between the "distribution of the damping resistances" 6 and the
difference in the natural frequencies of the system (4.5) characterized
by the value of x=/1-b/aZ.

The conclusion drawn is confirmed by direct calculation of the regions of
instability in the plane of the parameters 21, Zp. The stability
boundary of the system (4.5) in the investigated case is given by the
equation - -
@,=0— 2084 b=0

or in the notation (4.B)

Bg= — [1 — (v —v2)+¥al [14 v (1)
+[1—v$n(l f‘Vl)] [2-’(V1+V2)+V1c+\72c] [14-veetn(l +vidl—
—[1= (v Vo)l [1 =¥+ (1 =¥)P=0. (4.19)

The system (4.5) is stable if ¢,>0 and unstable if ¢.<0. In Fig 4.6 the
curves (4.15) separating the regions of stability ang the regions of
instability are constructed for different values of the parameter n for
fixed values of the parameters k, Y and C. As is obvious from Fig 4.6
and the results of the numerical waalysis, the case n=1 (partial damping
is identical in both compartments) is the most favorable, for in this case
the regions of instabi’ity are small (crosshatched in Fig 4.6). Let us
consider this case in 1 rve detail. For n=1 the equation (4.15) using
dimensionless parameters (3.52) is reduced to the form

Oroim 2V (Za— Z) W Z 2|~ Z 2 (L R+
FR(Z4 RZ))) 2V ER(Z—Z) 10V (ZiHRZ
23 RZ5 4 (14 )+ 2 (21 +Z,)]) =0 (4.16)
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Figure 4.6. The nature of the effect of the damping of the fuel
oscillations in the compartments (e1<<l, g,<<1)
on the regions of dynamic instability of the
space vehicle

Equation (4.16) defines the ellipses with the centers at the points (&1, £3),
(&2, cz) and the principal axes rotated by the angles ol and «),
respectively in the plane Z3j, Z;. The coordinates £i, i, o4 (i=1,2)

are defined by the formulas

G TYE—CHBABVE . FHP ot BaBrT
2 1"‘(3‘:)2 + 51,2 ' 17(8‘:)2 ’
b 2BL(— 1) (k1)
Gia==5arcig 2BLF (k— k2

(here the plus and minus signs are in accordance with the indexes 1 and 2).

Consideration of the term €1€p which we have neglected above leads to a
decrease in the regio’s of natural dynamic instability (see Fig 4.7).
From a comparison of ‘Figures 4.6 and 4.7 it follows that the damping of
the liquid oscillations in two compartments is simultaneously a necessary
factor stabilizing the system. The additional substantiation of this fact
is presented later,

Let us note that since
AD =By — By =46V (2, — Z1 )} (Z1+ 2,1 2> 0,

the regions of natural dynamic instability of the system (4,5) for different
partial damping (n#l) include the regions of instability for the case n=1;
in turn, the latter include the regions of instability obtained for the
system without dissipation. The above-investigated special case of 6=a
corresponds to the common points of the boundaries of the regiomns ¢n=0

and Qn_l=0 .

The problem of the asymptotic behavior of the boundary of the regions of
instability (4.15) is of interest fox the various laws under which ¢; and ¢,
approach zero:
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a) Let €170, €9+0, n=const.

0 1 ? z
Z =
z2 n "!,] \\\
\‘\\ TS =004
! 0,1
,
‘)~ ~Yo2
- (@) 1, / rz=r.o;, )
=7 /\/ufr. EIRSURT 2R
e=f/ ~ N
o7 | 1 BN
e=001 1 <<
e=0,1 <
~2f==8% g7 1=
a ! | h €,=0,0§

Figure 4.7. Nature of the effect of large damping on the region
of dynamic instability of the space vehicle

As is easy to see, this case corresponds to the initial expression (4.15);
b) Let el+0, 827*0, 0.
From expression (4.15) we obtain

Dy0=v3(1 Vo) — (v +va) [Vi+VieH Vv —vavie] =0; (4. 17)
c) Let, finally, £3°0, ez+0, .,

After certain transformations from equation (4.15) we obtain
Bpre =5 (1162 — (Vic+¥0) [Vt Vo F-vavie—vivad =0. (4.18)

Comparing expressions (4.15), (4.16), and (4.17), it is possible to see
that in all three limiting cases the boundaries of the region of stability
obtained differ significantly and they differ from the corresponding
boundaries ©=0 obtained under the assumption that the dissipative forces
are identically equal to zerc.

In the general case U1#¥~; the condition of stability of the system (4.5)

has the form .
@q=[1— (v~ vo) $-vs] [14-vact+ 1 (14-v1e) - BAYE —
—[1=vat-n (I =)} [2— (v Vo) + Vie+vac+BAY (1 — Wy)] X
X {14 vae 0 (1 4-vie) +-BAY] - [ 1+ vief-vae 4By (1 vie)] X
X [1=vp4- 1 (1—)] <O0. (4.19)
The numerical analysis indicates that the curves ¢,=0 in the plane Zj, Z,
also have the form presented in Fig 4.6 and 4.7. ahen =0 they become

the corresponding curves (4.15). For the general case we have all the
conclusions obtained above.
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Let us note the important difference of the above-investigated problems
from the corresponding nonconservative problems of the theory of elastic
stability consisting in the fact that the former cannot be formulated as
problems of finding the critical value of the parameter (in the glven
case the values of j=p/(m0+m). Actually, the value of j, as is obvious
from expressions (4.8) enters into the equalities characterizing the
stability of the system only in combination with the square of the natural
frequency j/202., The latter ratio denoted above as £, in the sense that
the problam does not depend on the value of this parameter. The dynamic
properties of the investigated system are defined by the entire set of
parameters 21, Z,, k, vy, g, 8.

Thus, the investigated form of the dynamic instability of the object of
control has an entire series of peculiarities which require known caution

- when developing recommendations to insure stability of a closed systenm;
in some cases on introduction of dissipative forces the effect can turn
out to be opposite to what is desired. This problem requires further
analysis with comsideration of the effect of the control system.

Calculation of the Dampiﬁg Coefficient

- The characteristic equation of system (4.5), omitting the factor p%,
_ is represented in the form

F(P=Fo(r)+ pF1(p?), (4.20)
where .
- : Fo(p) =00+ ko &18291% D1yt fe10, P20+ hyegl p20 -
+k031€2°?°§'¥12;
- Fr(p)=e0,01+ 20,0y + by Wy} ooe 10, W, -
+ kea0,Wa - kyereg0,0, 2. - -
Then for the purpose of some simplification we set 01=07=0 and we introduce

the new variable x=(p/c)<. Expanding the determinants ®3, ¥, o4, ‘Pl,
- ¢2, Yo, %19, ¥12, we reduce the expressions for Fo, Ty to the form

Fo ()4 x (apx?+ae+ ag)4- 0o (5324 b1x+ by)+
Ferer (X2 ox) +oi0uk (CoxF 1) -0 (dox+-1); (4. 21)
Fx(x)=91(box2+blx+sz‘Exx(f1x+f2)+52x(glx+gz)+
100 (cox 4 1)+ e500% (dox + 1)+-e1e00,x, (4.22)

The coefficlents of the polynomials Fg, F, are positive and are related
to the coefficients of the initial system (4.5) by the following
expression:
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ag=1— (V{4 vo)+vsi by==1—(v4-+vs);
ay=2— (v Vo) + (Vic+va) by=2— (v4+Vs);
a,=14vic+vags by=1;
do=1—vg fi=1—v &=1-W
co=1—vs fo=1+4ve g=14%a
5 W 3

V= s Vo
@ m) T om0+ )

T m | w0+’

_ Qee—dr? M Mgy (b__)
@ A m o+ N im0+ m) | pr(mO+m) \ by,
N ) .
‘V5= )‘2 )‘ﬁxoﬁ (_bﬂ.) H
p(m0+ m) | pa(m0+m)\ by,

’ (), e (2),
RO+ D (mo+ m) \ 2]’ pa (m0 + m) (10 + 1) \ o2
koyy _ k18,

b= —"—2 1 &= 2

Let us assume that the equation (4.20) for F;=0

D (p) = p* (@op + @112+ a))=0 (4.23)
has, in addition to the zero roots, two pairs of complex-conjugate roots

p=aztio, (4.24)
which is possible if the condition is satisfied: - .
a?—4aw, <0 (4.25)
(the condition of dynamic instability of the object of control).

The values of g1, €95 P> P1 are free parameters which must be available
so that the polynomial will be Hurwitz. For this purpose, on the basis of
the Hermite-Bealer theorem, it is necessary and sufficient:

a) That the higher-orde~ cnefficients of the polynomials Fq(x) and F1(x)
have identical signs (~=(»/0)?2);

b) That the roots uji, ~; of the polynomials Fg(x), Fq(x) be different,
real and negative;

¢) That they be permutated as follows:
u1<'Ul<l.lg<.-.<0.

The condition "a" for equation (4.20) is satisfied automatically as a con-
sequence of the positive determinacy of the quadratic form corresponding
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to the kinetic energy of the space vehicle and also other properties of
the system (4.5).

Further study of equation (4.20) is broken down into two steps:

Analysis of the conditions corresponding to reality and negativeness of the
) roots of the equation Fp=0, F;=0 (the condition of dynamic stability of
- the -object of control);

- Analysis of the conditions which must be satisfied by the parameters e, p,
in order to insure the necessary permutatability of the roots of the
equations Fg=0; F;=0.

Let us set pp=p1=0 in the expressioms (4.21), (4.22), and let us consider
the equation

Fo(x)=ap?-a,x+ ay+-vx=0; (4.26)
£y (x)=(f1x+f2)+‘n(g‘,x—{—gtz)=0, ‘ 4.27)
where v=e,6,>0; n=-2 >0.
Ut
! ] W 1Y -
7 ;\/‘ HED { f’\l u ,/ﬁ P&\ g=1

4 A7/ R_i<7 o
ol T H_@j 1 H’Zﬁ !\\{EEEE;#
N T N I i
s § T 0% 7
AN Jel AN L e L
N N A |
S P T L it i
I | L !

Figure 4.8. Nature of the effect of the damping of the fuel
oscillations on the stability of the space vehicle
(a) and the form of the function v(n) at the dynamic
‘instability boundary of the space vehicle (b)

For investigation of the roots of equations (4.26), (4.27) we shall use the
root hodograph method.

Let us first return to equation (4.26). The equation of the root hodograph

~ in the plane pu=Re x, Q=Im x - . .
S Q=2
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is the equation 6f a circle of radius R=Va2/ao with its center at the

_ origin of the coordinates (Fig 4.8, a). Here and hereafter the solid lines
correspond to positive values of the parameter v, and the dotted lines,
the negative values of this parameter. Obviously the values of v>0 have
physical meaning.

For v,=2Vagaj-a; the ronts of the equation (4.26) become real. Thus, in
order to satisfy the condition "b" the parameter v=ejep must be selected
so that the inequality v>v*=-al+2Vaoa2.will be satisfied.

Let us note that the magnitude of vy is ﬁositive, for the inequality

"‘“14‘21/5;5:>0

is a conmsequence of the condition (4.25) of the natural dynamic instability
of the object which, in accordance with the proposition, is satisfied.

Let us thus consider the equation (4.27). From the properties of the system

(4.5) we have directly: e
£1>0; [2>0; g1>0, g2>0.

The root hodographs corresponding to this equation are therefore segments
_ of the real axis in the plane (u, ).

Some of the possible situations in the arrangement of the initial (n=0)

and limiting (n*=) points, including comparison of them are presented in
Fig 4.8, a. The arrows indicate the direction of displacement of the roots
with increase in the parameter n>0.

Comparing the hodographs corresponding to the parameters v,n (located under
each other in Fig 4.8, a), we note that in all cases there are a pair of
numbers (v, n) such that the root of the equation (4.26) coincides with

one of the roots of the equation (4.27); therefore, with a further increase
in one of the parameters v, n the condition "y" will be satisfied without
violation of the condition "b." .

As is obvious, the statilization of the dynamically unstable space vehicle
is impossible if the aimping of the fuel oscillations is realized only in
one of the compartmen*s (e1=0 or £,=0). '

It is possible to realize stabilization of the space vehicle by selecting
the characteristics of the damping devices in such a way as to insure the
required values of the parameter V=€j€) and the parameter n=22/el consider-
ing possible technological rgstrictions.

The problem of selecting the required relation between €3 and €9 is of

practical interest. Let us consider in more detail, using the properties
" of the initial system 4.5 to a greater degree.
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The condition "v" of permutatability of the roots of equatioms (4.26),
(4.27) can be obtained directly. Actually, let

Lt
S1+ 18

be the root of equation (4.27). Then, calculating Fy(£), we obtain the
required inequality

Fo(Q)=as+(a,+v)t+0,<0. - (4.28)
The equation

a@+(a;4v) i+ 2,=0 (4.29)

gives the required relation between the parameters v, 1 at the limit of
stability of the system (4.5). Then the parameters v, n satisfying the
equation (4.29) will be denoted as v=vi; n=nx.

Let us introduce the notation:

h=L1; n=Tr; g2, g de?

& g g’ a
Then equation (4.29) can be written in the form

ay (pla +17 11+"1' a; ) -
PRGN B O Ml 2 Wl LS W) 4. 30)
o g( 11+7I+12+’1. P (

The problem of stabilization of the space vehicle in the oscillation fre-
quency band of the fuel in the compartments thus consists in selecting the
damping coefficients €1, € from the given region O<ej<eyy; O<epgeqy
defined by the inequality (4.28). The choice of smaller values of the
parameters €1, €2 is preferable.

Let us investigate equation (4.30) in more detail, including, in addition

to the parameters v=e]e, n=ez/sl which characterize the dissipative forces
occurring during the oscillations of the fuel in the space vehicle compart-
ments, also the parameters -
0=%g2y alv (12, lh 12» g.

directly determined by its compositional layout.

The function v(n) will be represented in the form

o 8082l + )2 —ayg (o + 1) 4+ ag (Iy + )2
v(n)=
g2+ i+

(4.31)

Calculating the discriminant of the quadratic trinomial (with respect to
n) in the numerator of the fraction (4.31), we find

D=g?(l, — LY (a} — 4amy),
obviously, on the basis of the condition (4.25), D<O.

181

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3

FOR OFFICIAL USE ONLY

This means that the function v(n) does not have real zeros. The ones of
this function are determined from the relations

1]?: _Il:% ;,T]g:: _[2='—fl"

Calculating the derivatives of the function v(n), we find

& ah—ty) O—DR+20 L)1+ @1

dn g (+ 102+ LR o3
v ahi—lh) (0 — 1) + 3 (80 — ) 92 + 3 (8 — 1) m + (B3 — 1)
dn? g (+ )2 (n+ L) .
(4.33)
From expressions (4.31)-(4.33) we find the points of the extremum (for
8#1) :
4=V, L+ VBl
- W=y Vo+1 "

and also the inflection point of the function v(n):

L=y
n ~ .

Vi—1

Calculating the asymptote of the function v(n) (for nt=)

va=ﬂ(9—ﬂg+ 1).
g a

as the characteristic point (for 6#1) we also find

1 — bl
"=

-- the point where the function v(n) intersects its asymptote.

The following sequence °f the characteristic points of the function v(n)
- arises:

—for ll>12 8<1(.0r.' l|<lﬁy 6>1)l
L =Yl ol —v bl 1 — 6y __ll+'l/_312
7i-1 < Vi—1 <o < Ve+1'

—fory>0h 0>1 r L <L 1<)

3-
_11+V'et,<t._et,<z1—_fﬂtz <’l—1/°‘2
Vi+l = 0-1 Vi—-1 yi-1

(Fig 4.9, a, b and 4.9, ¢, d, respectively).
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Figure 4.9. TForm of the function v(n) for various values of
the characteristic parameters of a space vehicle

Considering that the regions v>0, n>0 in the plane (v, n) only have physical
meaning, let us consider the various cases successively:

LG > 01 <l 82> 1)
As is obvious, for v¢v,, where

- asg 'a;
Vo= 20— ZLg 1),
P e t)
the stabilization of the space vehicle is impossible for any values of the
- parameters v, n. For v>v, for each v=v, there is only one value of n=ng>0,
for which the point (vg, np) belongs to the region of rntability of the
system (4.5) (see Fig 4.9, a).

The values of vg, ng stabilizing the system will be found most simply in
inverse order: being given the arbitrary value of n«>0, let us select the
values of vp=v(np) in accordance with the inequality

o E s ]

11+‘70 lz+‘f]o az
20> 0>1 (L <l 0L1).
- In the given case there are minimum values of the parameters vx, nu;

; ~ V6l
=2 aoag-—al>0; 'n* i‘ﬁ}{"‘g‘“\o

such that for ng=ns; vg=vxtvg (v is a small number), the stabilizaLion
of the initial system ?4 5) is insured
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If it is necessary to insure the necessary stability margins of safety,

-V
then it is expedient by selecting 'flozfl*=-—b7—aKQ—12— to select

vg beginning with the inequality

ay [platmg  itm &
> [phimy it 8,
el h+m L+t &

Let us note several special cases
3. 0=1 L £
ayfla+n, h+n & ]
vin =-—[———— —— — .
m glh+n n+n agg

This case is intermediate between cases 1 and 2 [one maximum of the function
v(n) is degenerate]. However, from the point of view of selecting the
parameters v, N required for stability of the system (4.5), it does mot
differ from case 1 (Fig 4.10, a).

4. Bly=1;

v(q)=_“_ﬁ_[e_'2l’l_ _"Lﬁ_"'_’i__ﬂ]_
gl a4+ b+ a

The points of intersection of the v axis of the function v(n) and its
asymptote coincide:

vo=vp= 2 [041 - 2],
ay

The choice of the stabilizing parameters v, 0 does not in the given case
differ from case 2 (Fig 4.10, b).

Let us note that in Fig 4.10, a-c the crosshatching denotes the regions
of instability of the system (4.5) .

5. ly=1y v=const.

The function v{n) coincides with its asymptote (Fig 4.10, c):

v=vn=3g?-(ﬂ—%g+l)' |
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=
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Figure 4.10. Regions of stability (1) and instability (2)
of a space vehicle for various values of the
characteristic parameters

Selecting vy=v,+v. >0, we find that the stability of the system (4.5)
is insured for any values of v=ep/e;. The value of v.>0 can serve as a
measure of the safety margin of stability.

The initial values of €1s €9 (dissipative coefficients) are obviously
selected under the condition

ege, =const = v,.
The relation between €l, €2 can be arbitrary.

As is obvious, there are bifurcation values of the parameters 2=£9=1x
and 64=1 for which the qualitative - form : of the function v(n) varies.

Let us construct the boundaries of the regions £1=£2, 9=1 In the plane of
the parameters
Z= -—-———-mo—f_mm.' Z= ’”°+"‘)i'-’.' .
1 l/]o-'}-J Ml 2 J°+.’ 12, (434)

that is, the characteristic parameters of the space vehicle which were used
to construct the regions of its stabilizability.

Let us note that the equation %1=%9, if we proceed to the system of parameters
Zi, 29, k, Y, 5, differs from the equation 6=1 by the presence of a term
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proportional to the parameter v2=(A,/m0+m)2, which plays the role of a
small parameter for the investigateé class of objects. Setting y<0,
the equation &;=2, (6=1) will be converted to the form

(Zi R — k(2P =(1—-1)(k—1), (4.35)

where the parameters k, ¢ are defined by the expressions (3.52).

The equation (4.35) is the equation of a hyperbola with its center at the
point (-%, -i), which for k=1 degenerates into the pair of intersecting
straight lines. The mutual arrangement of the boundaries of the regions
of natural dynamic instability

) [Zy+ @F 1}5)]2 [z’ + (‘ * Tlfi)r

CVi+er '(c]/_l_:_k)’

is represented in Fig 4.11, where Fig 4.11, a corresponds to the case of
k<l, Fig 4.11, c, the case k>1, Fig 4.11, b, the case k=1.

AN
N\ R
\Q>§§R 4%2% e .
R Z AT AN F o .
MR AN W Tep
) AT AN g5op\R
AR AR ”5“
0 \‘ \
L
Jmin\ |
||
i “ima\ k=8
50 DS T—F
 |azog
038N
025\\\/‘\\ .\-\ Iﬁ
Y N
kY cloa, re
hie ARES \[#=4
o181 \.\ A iya e i
\\\~ o,rsé‘" .
014 PR k=8 —
\ P \
010 —at> LN
)Y .
g0l T—l—— =k ]
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Figure 4.11. Mutual arrangement of Figure 4.12, Dissipative coefficients

the boundaries of the regions of as a function of the depth of the
dynamic instability of a space liquid for a cylindrical compartment
vehicle and the bifurcation with radial ribs
boundary
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- From Fig 4.11 it follows that on satisfaction of the condition of dynamic
instability (Fig 4.25), both the situation ;>4 (in the region denoted by
double crosshatching) and the situation 2<%, (not crosshatched) can be
realized.

If we take the restriction of smallness of the parameter y, then depending
on the specific compositional layouts of the space vehicle, all forms of
the functions v(n) presented in Fig 4.9 can be realized.
Let us consider the numerical example. Let for the system (4.5)
- v,=0,513; v;=0,385; vs=0,656; v;(=0,369;
’ ) V2=0,770; ‘V4=0,]50; 'V2c=0,525,
then ¢,=0,102; 2,=0,561; a,=0,844.
In the absence of dissipative forces the investigated system is dynamically

unstable. The roots of the characteristic equation have the form
p=1+0.77745.0921.

Calculating the characteristic parameters, we find 21=0.473; £7=0.347;
8=0.962; g=2.813. )

In the given case v(n) is a monotonically decreasing function.

The equation of the asymptote has the form

v—_—#‘;—‘(wrh—:;— g)=0.028

and indicates that the stabilization of the system is impossible for any
valués of n if v<0.,028.

In order to insure stability of the system (4.5) in the given case it 1is
necessary to select the value of the parameter n=ey/ej, for example, ng=0.5

From formula (4.31) we calculate the value of My corresponding to the limit
of stability of the system (4.5):vg=v{n0)=0.035.

Selecting the value of vy0.04 corresponding to a 20% stability margin
with respect to v, we find the required pair of stabilizing parameters:

vo=0,04; 70=0,5 or. £.9=0,28, e"=0,14.

If we assume that the dampingAéoefficients €], €, are identical in both
- compartments with fuel, the minimum values of g3 and ej stabilizghg the
system (4.5) will be e=ep30.17.

Let us discuss the problem of practical realization of the damping
coefficients found.
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Fig 4.12 shows the dissipative coefficients 6 for the cylindrical
compartment with radial ribs as a function of the parameters: depth of
liquid (h=h/Rg), number of radial ribs (k) and their relative width
(b=bg/Ry). Here Ry is the characteristic dimension of the compartment.

The coefficients Si and g5 are related by the expression

I

(i=12), . (4.36)

where o4 is the characteristic frequency of the fuel oscillations;
SOi=SOi/RO is the relative z-coordinates of the free surface of the fuel in
the i-th compartment.

Substituting the values of £1=0.17; 01:5.0; ;Oi=0.09 in formula (4.36),
we find 6=0.35.

- Let the depth to which the compartments are filled hi=hi/R0=0'6' Then as
is obvious from the graph in Fig 4.12 in order to insure the required
damping coefficients g3=e5=0.17 it is necessary, for example, to install
either eight radial ribs of relative width . b=0.15 or four radial ribs
of relative height b=0.20. Obviously other versions are possible.

Study of the Joint Effect of the Parameters of the Automatic Stabilization
System and Dissipative Forces on the Stability of a Space Vehicle

Let us first consider the equation

Fo(x)=x(aox*+arx +a2)+ 0o (box?+ b+ by) +-
. eqeg (X2 0o%) Fix [eg (cox+ 1) e (dox 4+ 1)]=0.  (4.37)

The structure of this equation is such that the effect of the automatic
angulsr stabilization on the stability of the space vehicle in the oscilla-
tion frequency band of the liquid is realized directly (the parameter

_ v=pg), and also by the parame*ers V=€jpj, V=E202. The parameter V=€j€g

characterizes the effect of the dissipative forces.

The problem consists ‘. selecting these parameters so as to insure (4.20)

realness and negative..ess of the roots of the equation (4.37). Let us

- consider each of these narameters separately also using the root hodograph.
a) Effect of the parameter Vv=pg.

The equation Fp=0, setting p1=0, is represented in the form

x (aox’+a1x+a25+ ¥ (Bpx2 - b+ by)=0. (4.38)
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Let us calculate the characteristic (from the point of view of the root
hodograph method) points for the equation (4.38):

. . . R
x=0; x=2~ao-(-a,-|_- Va§—4a,,a2) —- initial points (v=0); x=

= 1

=l x=m——
’ =it v limiting points (v=).

The root hodographs for equation (4.38) are presented in Fig 4.13, a.

If for the coefficients aj, by we take the numerical values corresponding
to the above-given example, then the values of the parameter v for which
the hodograph intersects the real axis (the stability boundary) are as

follows: -
v=—0,54; v=10.

These numbers reflect the order of the critical values of the parameter v
for the investigated class of systems.

As is obvious, the best effect is achieved when selecting negative values
of the indicated parameter. This requirement is, however, in contradiction
to the requirement pp>0 following from the conditions of stability of the
system in the frequency range of control of the angular movement of the
space vehicle as a solid state and in practice cannot be realized.

Thus, the effect of the parameter v=p from the point of view of stability
of the space vehicle in the frequency range of the fuel oscillations is
unfavorable: an increase in Po corresponds to an increase in the "degree"
of dynamic instability of the system.

b) Effect of the parameter v=gjej.
The equation Fp=0 will be written in the form

[20x° (214 @ub1) X+ Qo] 4 vx (X4 Qo) =0. (4.39)
The initial points (v=0) of the root hodograph are the points which for
fixed values of the parameter belong. to the circle in Fig 4.13, a; the
limiting points are the points x=0; X==pg.
The trajectories of the roots are presented in Fig 4.13, b, where the
dash~dot curve corresponds to displacement of the initial points with an
increase in the parameter pg in the equation (4.38).
As is obvious, the stabilizing effect of introducing the parameter v=gjej
is also manifested for pO#O. Here only the critical value of v=vx

increases, which for values of pg-l typical of the investigated class
of objects, can be approximately calculated by the formula
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v o3+ (@ + Qob1) 62 + (a3 + Qb)) & 4 Qoba
¥ o (@ + Q)

where a=R xq, % is the complex root of the equation (4.23) for v=0.
c) Effect of the parameters V=Eqn; veEgPT.

Let us consider the equation

(@x? 415+ ay) L v (14 rx)=0, (4.40)
where r={co' 1 vy
doy if  v=cp,.

The root hodngraph equation in the plane (y,Q) is the equation of a circle

1\2 4.41
ot (b ) =R .41

with the center at the point (-1/r, 0) of radius
R=1/2_a L (4.42)

ay ragy r2
The critical value of v, (corresponding to the intersection of the u axis
- by the circle) is calculated from the expression

v*==-l—[(-?i:£ —01)+2Vao(aof—z—axfﬂ'*"az)]-. (4.43)

It is easy to see that the expressions (4.41)-(4.43) retain their meaning
for a12—4a0a2<0, that is, under the condition of dynamic instability of
the space vehicle as an object of control.

In Fig 4.14 we have a family of circles (4.41). When the condition of
positive determinacy of the quadratic form corresponding to the kinetic
energy of the system represented by the equations (4.5) it follows that
0<r<l. For r+0 the centers of the circles (4.41) are shifted in the
negative direction of the p rxis. The radius of the circle decreases to
a value of R=w, where ¢=Im x, x 1is the root of the equation apx“+a x+az=0,
and then it increases. Here the length of the least arc subtending

the initial points fo* ¢<y<vxx, and together with it, the critical value
of vx, increases.

Thus, it is necessary to consider the situation favorable where the center
of the circle in Fig 4.14 is located as close as possible to the origin
of the coordinates. In this case the value of Vx=€ 404 is the least.

E Let us again consider the preceding example. Calculating the coefficient
cp and dy, we find r=cy=0.84 (v,=0.05); r=d(=0.345 (v4=0.63).
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Figure 4.13. Root hodographs of Figure 4.15., Stabilizing parameters
the space vehicle with respect to Vv, n of the space vehicle

the parameters p,, v=0 (case a)
and pg, v(case b?
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Figure 4.14. Root hodographs of the space vehicle with
respect to the parameter v
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As is obvious, the critical value of vi essentially depends on the value
of the coefficients dp, cq characterizing the connectedness of the
partial system (s, z?, (sz, z) respectively.

The results obtained above have the following practical significance in the
given case.

With invariant adjustment of the parameters of the control system (the values
of the parameter pl) it is necessary to insure damping of the oscillations

of the partial system characterized by the generalized coordinate sj.

The required value of the damping coefficient €3 is minimal in this case

(by comparison with the required value of the coefficient €1)

Generalizing the equations obtained when investigating the equation (4.38),
we note that the condition "b" of the stability criterion (the condition
of realness of the roots) can be satisfied by selecting the appropriate
values of the parameter

v=eg, >0 v=60 >0 v=e50; >0.

From this point of view the indicated parameters are stabilizing parameters,
_ the parameter v=pg is destabilizing.

Let us return to the equation

Fi(x)=01 (86x2+ 01x -+ b))+ e (frx+ fa)+eox (81 £2) +
+e100% (e + 1)+ 2200 (dox + 1) 22010 =0. (4.44)

The structure of equation (4.44) is such that the parameters pj, €;, €j
influence the magnitude of the roots of this equation directly.

The influence of the parameter pg is indirect (by means of the parameters
El, 82) .

- The analysis of the equation (4.44) considering the properties of the system
(4.5) indicates that nc problems arise comnected with insuring reality of
the roots of this equation. Therefore primary attention must be given to
the problem of selectin, the values of the parameters from the given set
sl,oez, 98, Py such as L, insure permutatability of the roots of the equation
F0= H Fl= :

a) Effect of the parameters ej, €3, Py.
Let us denote g=ej/pp (r=1,2).

The equation is representable in the form

by (x4 o) (x - 0p) - gx (x4-B)=0; (4.45)
ho= f1+0c0 >0; ly=fo+ @ ( or ==/}
ho=g1+edc >0; ly=go-+0 ( org=eyg).
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The trajectories of the roots of the equation depend on the mutual arrange-
ment of the characteristic points:

Xem - X+ -0y (Initial points ¢==0);

x==0; x== —f# (-initial points ¢ - oco).

In the case of ,<B<a, (standard for the investigated class of objects)
the root hodographs are segments of the real axis im Fig 4.15, b. The
values of the initial and the limiting points in this figure correspond to
the numerical example presented above:

$=2,83; a;=1; ay=3,55.

b) Joint effect of the parameters €1y E

R

2

Let us write equation (4.44) in the form

{01 (box?+brx -+ by) f-e,x [(fl Qo) X+ (fo -]} +
2% (81 Qo) X+ (g2 o) - 211]=0. (4. 45)

In the given case x=-07, x=-0, are the roots of the equation (4.46) ‘or
€2=0. The dependence of aj, 09 on the parameter el/pl was studied above;

x=-B is the root of the equation (4.46) for €9*®, Thus, if we also assume
that e1p)<<gytpg, the root hodograpis for the equation have the form
indicated in Fig 4.14. The initial points aq, 09 are shifted, but with
respect to the points x=-1; x=—[1—(v4+v5)]“l as a result of the effect of
the parameter e¢j.

On the whole it is possible to see that the parameters €3, €7 jointly shift
the roots of the equation to the right — in the direction of positive .

Let us combine the root hodographs corresponding to the equation Fp=0;
F1=0 (Fig 4.15, a and b) for values of v>vx guaranteeing the realness of
the roots of the equationm Fp=0.

From Fig 4.15 it follows that there is a pair of numbers (v, n) for which
coincidence of any two roots of the equations (Fp=0; F1=0 and with a
further incredse in these parameters the condition of permutatability of
the conditions, and together with it the condition of stability of the
initial system, will be satisfied.

This means that the problem of stabilizing the dynamically unstable space

vehicle can be solved by selecting the characteristics of the damping devices v
with simultaneous adjustment of the parameters of the control system

(the automatic stabilization system).

As for the number of values of the corresponding parameters, in each
specific case they can be calculated, for example, by the method of
successive approximations on the basis of the corresponding hodographs.
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Returning to the initial set of parameters

kb kyb
N Q= ——

€1, &9 =
y €2 Qo a2 o )

and generalizing the results obtained, it is possible to draw the following
conclusions.

1. The dynamic instability of the space vehicle caused by the effect of the
following force cannot be eliminated by selecting only the parameters of the
automatic stabilization system of selected structure.

2. The damping of the fuel oscillations in the compartments is a defining
factor insuring stabilization of a dynamically unstable space vehicle.

. 3. The requirements on the characteristics of the damping devices can be
: weakened by special adjustment of the parameters of the automatic stabiliza-

tion system: mnamely:

a) Decreasing the dynamic amplification coefficient A (o) of the stabiliza-
tion system in the frequency band of the fuel oscillations;

b) Increasing the lead ¢ (¢) of the automatic stabilization system on
these frequencies.

The limiting values of the corresponding parameters can be calculated from
equation (4.31).

4.4, Stabilization of Structurally Unstable Space Vehicles Using a-
Discrete Stabilization Algorithm

Preliminary Remarks

The method of reducing the dynamic amplification coefficient A (o) in the
required frequency range discussed in this section is based on the idea

of separating the movemeat of the tcpace vehicle into slow and fast components
(in the form in which it was proposed by I. M. Sidorov [68]).

In order to realize the orresponding algorithm, the presence of an on-board
computer (an on-board (ig‘tal computer) is required.

For the following discussion the problems that are typical of the discrete
» automatic control systems will not be considered. Primary attention will

be given to estimating the possibilities of the algorithm in the sense of

attenuating the effect of the structural instability of the cbjects with N

liquid-propellant rocket engines.

Let us consider the following dynamic system [85]:

A% 4 B+ CE-+ Du=F (t), %(0)=%,
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where §, 3, ?, n are the vectors; A, B, C are the matrices of dimensionaliity
nXn; u(t) is a scalar function subject to definition.

The variables ii (i=1,2,...,n) will be separated into two groups:

1) ?1, ?2,...,xk (k<n) —- "slow" variables accessible to measurement;

D) §k+1""’§n-l’ §n ~-- "fast" variables.

Let us assume that the control input u(t) is formed using slow variables.

Together with the system (C) describing the controlled movement of the real
object, let us consider another system representing the model of the object:

ag by +cy=du-+7(0), )
where ¥, 3, £ are m-vectors; a, b, ¢ are the matrices of dimensionality mXm.

In real situations m<<n, for the model (M) reflects our knowledge of the
object which, as a rule, is far from sufficient to fully reproduce the
system (C).

It is expedient to select the model beginning with the physical essence of
the latter based, for example, on the experimental data of investigation

- of the dynamic properties of real systems. This problem -- the identifica-
tion problem -~ is of independent interest, and it will not be consildered
in this paper.

- Let us propose for+determinacy that the order of the model (the dimenslional-
ity of the vector y) corresponds to the number cf slow variables which are,
therefore, controllable variables.

Thus, we have two systems (C)-(M). The problem consists in constructing the
algorithm which will insure stability and the required quality of control

of the system (C) for given disturbances f(t), and at the same time will
weaken the effect on the transient processes of the oscillations of
auxiliary oscillators (the effect of "structural instability').

Let us then propose that the parameters of the model (the matrices, a, b, ¢
and the vector d) be selected and in the process of fumctioning of the
algorithm not change. Then in accordance with the discussed requirements
the proposed algorithm must solve the following problems:

Processing the information about the movemeant of the system (C) (according
to the semsor readings) and the movement of the modzl (by the results of
integrating the equations (M));

Calculation of the initial conditions and prediction of the disturbances
for the model (by the results of processing the information);
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Calculation (prediction) of the controlled inputs u(t) for the system (C)
for a finite time interval in advance.

As is obvious, in the given case the adaptation is understood in the sense
that by adjustment of the disturbance vector f and the vector of the initial
conditions ;(0) the model will strive to describe in the best way the slow
component of the movement of the system under the conditions of variable
external disturbances F(t) and the presence of interference in the form of
the effect of fast components of the solution.

Stabilization Algorithm

As applied to the objects of the investigated class the stabilization
algorithm can be executed, for example, in the following form.

Without restricting the gemerality, let us propose that the equations of
motion of the space vehicle in the active segment, in addition to the
generalized coordinates z, ¥ characterizing its movement as a solid body
(slow variables) also include the generalized coordinates sj, 8 caused
by movement of the fuel in the tanks for the combustible fuel component
and the oxidizing agent (fast variable).

We have the following eguations.
The system: A
At BRHCR+ Du=F (t); F(0)=%s ©
z 1 ¢ -1 -1
[ o

X LA A= 1 —ays, — s, |,
= ; A=| :
51 \ A5,z — sy 1 0

2

s —y: —agsy O

0 —ajy 0 0\ /0 —axy 0 0
g—|0 —ay 0O ‘o= 0O 0 0 0}, p| s
' 0 0 —r O 0 0 -0 ! o
0 0 Q0 — g 0 0 0 —q 0
The model

(s 100
y=| 8 | a=[010];
0 001

/0 0 0 0 aw au
bes 0 o o o 0 an awl, S
PR i B e VL
ay ag ay a ag _Z 0 A
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As 1is obvious, the system of equations of the model also includes the
equation of the control system which is taken in the form

gl Ayt =k 4 b+ Bl - .
Simultaneously with the system (M) let us also consider a "fictitious"
system

ay+by+cy+du=J; ) 9r (0)=4Yro, :

differing from (M) only by the vectors (yp) of the initial conditions and
disturbances. Thus, there are two pairs of vectors

5:0), F+(0) w [4r(0) Fr(O).
Let us introduce three characteristic time intervals:

h is the integration step of the systems (MT), (M) and the system (C) during
simulation (it coincides with discreteness of arrjival of the.information);

T is the time interval between two successive adjustments of the model
(M): the vectors _};1: (0) and ¢ respectively (inside the interval
[k, (k+l)T] the vector f,=const).

T is the length of the initial data processing interval -- it coincides
with the time interval of adjustment of the vectors yp(0), £r(0) in the

system (Mp). .
Let us also introduce the notation: s -- the number of adjustments of the
vectors ¥_, f. in the analysis section; N -- the number of integration

steps in the segment of length T.

(5) xith g 0t xet) -
() |2 ] £ we [ Wi . [ -
AL 1854t U] - g+ Yoyt P [ 11
K(0)% Y0 fofy L | e -
: ot bt
3) Hadens i) | SEI I A
o=y ity oty o SO -
204 111y }5/:/‘7);/: K NN OV -
Auexpem- (4) _L'Wma;/;;a fr , . !’ [ ,l‘.—-:_-_';..?_-'_. b
Q) “airms | v ddznang . Lo k_/‘f'_?_:__\ | || |
Vi oUUTNL - [
|A(E)=x(t)=y(t) oy T Ty -
L1 b'
@ .
Figure 4.16. Stabilization algorithm of a space vehicle:
a -- schematic dlagram; b -- regime 1, T adjustment of the
model of the space vehicle
Key: ,
1 -~ discreteness; 2 -~ object; 3 -~ model; 4 -~ error signal B
g
processing; 5 -- model

197 ,

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3

- FOR OFFICIAL USE ONLY

Then the following expressions exist between the variables h, 1, T:
Ts(s+1)r==Nh.

Let us make some remarks with respect to the role of each of the systems
©y, (MT) and (HT) in the algorithm.

The system (C) is a dynamic system which is the object of control; the
coordinates s (t)=z(t); x(t)=y(t), information about which comes to the
- computer with a step size of h, are assumed to be accessible to measurement.

- The system (MT) is a model of the system (C); it takes into account only
part of the generalized coordinates (the "slow" variables) and it is
designed for processing the control input u(t), coming with a step size h
- to the input of the system (C). The initial conditions J; (0) and the
disturbance vector f; are adjusted every 1 seconds on the basls of the
results of the information processing.

The system (MT) is designed for calculation of some fictitious movement of
the model in the interval T (Fig 4.16, b), without considering its adjust-
ment inside the interval in order to compare with real movement and error
formation:

AP (=4 =50 (=1, 2). (4.47)

In order to process the mismatch signal, the least squares method is used
- which separates the low-frequency component from the complex signal Ap(t),
which is used in the control law u=u(t).

The block diagram of the algorithm is presented in Fig 4.16, a. The
representation of the operation of the algorithm in the segment (0,2T)
gives Fig 4.16, b where the dotted line indicates the actual movement of
the system (C), and the solid line, the movement of the model (M.); the
dot-dash line indicates movement of the modei (My) (Fig 4.16, b). The
breaks at the points h; (Fig 4.16. b) and (st+l)t denote adjustment of the
initial conditions for the systems (M) and (C) at the corresponding points
in time.

Let us discuss some s<grificant events in the operation of the algorithm.
The algorithm has a finite memory (the length of the memory interval is T)
in which the following core stored:

Information about the movement of the system (C) in the form of the matrix
MC of capacity nXN which is denoted by means of a shift of the matrix
elements through the time intervals 1T as the system moves;

Information about the movement of the fictitious system in the form of the
matrix M of capacity mXN renewed as follows;
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Intermediate results, including the results of calculating the proposed
external forces (prediction of the interval of the controlling forces ahead,
the prediction ahead of the initial conditions for the systems (C) and (MT)
for the interval T,

111 -

When simulating a real object by the system (C) it is also necessary to
integrate the system (C) for which it is necessary to provide the
corresponding memory modules.

It is necessary to add a number of constants to this (the length of the
analysis segments, the switching segment, the number of switches, the
constant for the least squares method, and so on).

Let us consider a characteristic point in time t=(k+l)T. Let us discuss
the following steps:

a) Processing of information (tiltration of the periodic components in the
control signal)

Using the data accumulated in the MC, M¢ modules, let us calculate
B(O=Z (B)~C(); ba(O)=4(O)—0(t)
at the time
by==(kT L h)yi.., ty=(kT+Nh)=(k+1)T.

The analyzed functions 44(t) (i=1,2) are the sum of the low-frequency
process caused by the presence of external disturbances and the sum of
the finite number (in the given case two) of harmonics connected with the
presence of oscillatory elements with frequencies.

With respect to the essence of the problem it is necessary to insure
filtration of the periodic components of the signal 4.

Let us set

6[ (t)=(12t2+ alt—i—ao: 82([)=p2t2+p1t+po (4' 48)

In accordance with the least squares method, in order to find the vectors
K:(az, oy ao) ﬁ:(Bz, B1» BO) let us write the system

sza;p§=@’ (L4%~
where by=(bya buis bro), by={ta, ba1, bxo)i b s B2
p={ta P2 b1}
o P1 Po

The elements of the vectors 31, KZ and the matrix p are calculated by the
formula
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From the formulas (4.49) we find
T=p1b;; B=p-15,. (&.50)

- b) Calculation of the disturbances (prdicting ahead by the interval 1)
Let us propose that the difference in the values of x(t), y(t) is caused
by the effect of various (constant) disturbances (F, M) and (f1T, mT)
in the systems (C) and (Mp).

Then A, (f)=AF; Ky(t)=AM,
- AF=F— fr; sAM=M —m; (4.51)

where

are the proposed values of the disturbances at the time t=kT for the
system (Mp).

Comparing expressions (4.51) with (4.48), we find
Fil(e+ ) T)=f(]T)+201; fo[(k+1)T]=f2(KT)+ 2. (4.52)
¢) Calculation of the initial conditions for the systems (M. and MT).

The values of
- Sk + D) TI=wl 4ol a5 & [(k+1)T]=2eT+a;
8 [(kFDT)=BT? b7 -85 5[4+ 1)T\=28T +

give the difference (c= the average) of the values of the functions
z(t), t(t) and ¥(t), 6(.) and their derivativeg at the time t=(k+1)T.

Thus, if we set

0=t [(t+ 1) T)+ el 0, T+ag §(0)=C [(4+1)T]4-20,T+0;3
0(0)=8 [(k-+1)T}-HBT*-BiT+By; 8(0)=0it+ )T+ 28T +f1; (4.53)
2O)=a[(k+1)T] 2(0)=ul[k+1)TI,
and also Si=S1(kT) 4205 fo=fo(KT)-- 2By,
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then the solution of the system of equations (M;) on the basis of the krown
principles of the theory of differential equations will on the average be
closed to the solution of the system (C) in the next (sufficiently small)
time interval .

As for the system (M,), the calculated values of (fg, 8p, upg) and (fp, £5)
will serve as the initial conditions for calculating a fictitious move-
ment in the segment

{(e+1)T, [(s+ DT +(-+DT]

Thus, all of the required initial data are calculated for integration of the
systems (M,) and (Mp) in the interval

[(k+ DT e+ 1T 1),

The further sequence of the calculations 1s as follows:
The system (M;) is integrated in an interval of length h;

The system (C) is integrated for the calculated values of u(t) as a
result of integration of the system (MT);

The system (Mp) is integrated;
The results of the calculations are stored in the digital computer memory.
Finally, at the time t=(k+l1)T+t, the entire "a" and "b" cycle is repeated.

The effect of stabilization of the space vehicle using the discussed
algorithm consists in the following. As is demonstrated in referemce [23]
the following expression exists relating the real part Repj of the root
p, of the characteristic equation of the closed system made up of the
ogject and the control system:

Ay (9)) sin 94 () Pelw)) | (4.54)
2 - Deep) .

Q=0T Au(g,)~—;j, . (4.55)

Repj= —— +

where w: is the frequency characterizing the investigated control system;
T is the characteristic information analysis time during functioning of the
algorithm,

In the case of structural instability of the object the second term in
formula (4.54) is positive. Increasing the parameter T, on the basis of the

expression (4.55) we decrease the dynamic amplification coefficient of
the control system Au(ﬂj).
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For some T, Reps; becomes positive, and therefore the effect of the structural
instability of t%e space vehicle for the object of control will be eliminated.

Consequently, the main thing here is the possibility of lowering the dynamic
amplification coefficient Au(Qj) in the selected frequency range wj of the
object, which usually is difficult to realize for a control system of
classical structure [38].

Numerical Realization of the Algorithm*

The following program is a numerical realization of the adaptive control
method for the case of two auxiliary oscillators (8-th order system), and
it is written in FORTRAN IV. The algorithm was checked out and the numeri-
cal calculations were performed on the SIEMENS-4004/45 computer.

The operation of the algorithm begins with input of the initial information
containing the follcwing:

The coefficients of the equations describing the system as an object of
control;

The coefficients of the equations describing the "model" of the system;
The time intervals n, 1, T.

The module for calculating the matrix of the coefficients u for the least
squares method operates in the initial program, for these values depend
only on the number of points N in the information analysis section T.

The equation conversion module reduces all of the systems of equations

to the form convenient for application of the standard program for integrating
systems of differential equations by the Runge-Kutta method. By the
"integration" results the matrices of MC are formulated for the system,

and the matrices MFl, MP2, MF3, MP4 for the "models."

The matrix MYl is filled with the values obtained for the control inputs.
The matrix & is the table of mismatches between the actual behavior of the
system and the operatine model.

The variables hy, T, «re used to organize the cycles inside the program;
the variable s makes it possible to increase the information analysis
interval.

- *The algorithm was programmed and checked out on the computer by
0. B. Makhlin and T. K. Chudakova.
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Description of Files and Variables

1 PROGRAM DUSHA
2 REAL DMU(3,3)/9*%0.0/, DMUOBR(3,3)/9%0.0/, AC(4,4), BC(4,4), CC(4,4,
3 IDC(4), FC(4), ACOBR(4,4)/16%0.0/

4  REAL G1(4,4), G2(4,4), G3(4), G4(4), APRC(8,8)/64%0.0/,
BPRC (8)/8%0. 0/
5 1, FPRC(8)/8%0.0/
6  REAL AM(3,3), BM(3,3), CM(3,3), MM(3), ALFA(6,6)/36%0.0/,
FM(6)/6%0.0/
7 REAL BINK(3), B2NK(3), ALFANK(3), BETANK(3)
8  REAL DELTA(2,25)/50%0.0/
9 . REAL *8 APRCD(8,8), ALFAD(6,6), YOMD(15)/15%0.1/,Y0CD(15),
10 /YKMD (15), YKCD(15),
11 +XAD, XED, A(16,25),
12 +FMD(6), BPRCD(8),FPRCD(8),USYS,USYS0,USYSI,HD
13 REAL MB(2,5), MC(8,25)/200 *0.001/, MU(2,25)/50%0.0/,
14 WY (5,6)/30% 0.0/
15  REAL MF1(%,25)/125 *0.001/,MP2(5,25)/125%0.001/,
16 +MF3(5,25)/125%0.001/ ,MP4(5,25)/125%0, 001/
17  REAL MMPU(4,25)/100%0.001/

Assignment of Time Intervals
18 EXTERNAL WHODM

19 EXTERNAL WHODF
20 EXTERNAL WHODC

21 RO-6.0
22 H=0.05
23 $=4.0

24 TAU=0.25
25 N=25

Calculation of the Matrix

26 C *** BLOCK 2#** Calculation of the coefficient p for the least squares

method,
27 C Obtaining the matrix p and manipulation of it
28 IC45=0 :
29 T=(S+1.0)* TAU
30. DN=N
31 UMO=DN

32 UM1=N*(N+1.0)*H/2.0

33 UM2=N* (N+1.0)* (2.0%N+L.0)* (H**2) /6,0
- 34 UM31=(N* (N+1.0) /2.0)
B 35 UM3=(UlM31%*2) % (H**3)
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36 UM41=N* (N+1.0) * (2. 0#%N+1.0)

37 UM42=3. 0% (N**2)+3, 0*N=1,0

38 UM4=UM41*UMA 2% (H**4) /30.0

39 DMU (1,1)=UM4

_ 30 DMU (2,1)=UM3

41 DMU (3,1)=UM2

42 DMU (1, 2)=UM3

43 DMU (2,2)=UM2

44 DMU (3,2)=UM1

45,  DMU(1,3)=UM2

46 DMU (2, 3)=Ui1l

- 47 DMU (3, 3)=UMO

48 WRITE(99,30) ((DMU(1,K),K=1,3),I=1,3)
- 49 30 FORMAT ('',10X, 'MATRIX MU'//('',3(3X,F11.6)))
) 50 DO 50 I=1,3

Manipulation of Matrix u

- 51 DO 50 Ch 1,3

52 50 DMUOBR(I,K)=DMU(I,K)

53 CALL SPINV(DMUOBR, 3,3,ISIG)

54 WRITE(99,60) ((DMUOBR(I,K),K=1,3), I=L,3)

55 60 FORMAT('',10X,'MATRIX MU MANIPULATE'//('',3(3X,F11.67)))

Input of System Coefficients

56 Cx** BLOCK 3**%* CONVERSION OF SYSTEMS O
- 57  READ(97,2) ((AC(I,K),K=1,4),I+l,4)
- 58  READ(97,2) ((BC(I,K),K=1,4)I=1,4)
59  RESD(97,2) ((CC(I,K),K=1,4) I=1,4)
60 2 FORMAT (4F9.5)
61  READ(97,2) (DC(I),I=1,4)
62  READ(97,2) (FC(I),I=1,4)

Conversion of System Equaticus

63 DO 3 I=1,4

64 DO 3 K=1,4

65 3 ACOBR(I,K)=AC(L,K)

66  CALL SPINV(ACOBR,4,4,ISIG)

67  CALL MAMURA(ACOBR,FC,Gh,4,4,1)
68  CALL MAMURA(ACOBR,DC,G3,4,4,1)
69  CALL MAMURA(ACOBR,CC,G],4,4,4)
70  CALL MAMURA(ACOBR,BC,Gl,4,4,4)
71 DO 6 I=1,8

72 DO 6 K=1,8

73 6 APRC(I,K)=0.0

74 DO 8 K=1,4
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75 8 APRC (2#K=1,2%K)=1,0

. 76 DO 10 I=1,4
B 77 DO 10 K=1,4
78 10  APRC(2*1,2%K=1)=G2(I,K)
79 DO 12 I=1,4
80 DO 12 K=I,4
8l 12  APRC(2*1,2%K)=G1(I,K)
82 DO 14 I=1,4
83 BPRC (2*1)=G3(I)
84 14 BPRC(2*I=1)=0.0
85 DO 15 I=1,4
86 FPRC (2*%I)=G4 (1)
87 15 FPRC(2*I=1)=0.0
88 WRITE(99,16) ((APRC(I,K),K=1,8), I=1,8) -
89 16 FORMAT('',10X, 'MATRIX A SYSTEM CONVERSION'//('',8(IX [
F11.6)))
90 WRITE99,17) (BPRC(I), I=1,8) '
91 17 FORMAT('',10X, 'MATRIX B SYSTEM CONVERSION'//'',8(IX,F1l.6))
92 WRITE (99,18) (FPRC (I),I=1,8) -

93 18 FORMAT('',10X, 'MATRIX F SYSTEM CONVERSION' //'",8(IX,F11.6))
_ Model Coefficient Imput

9% C*#%% BLOCK 4***MODEL CONVERSION

95 READ (97,100( (AM(I,K),K=1,3),I=1,3)
96 100 FORMAT(9F7.3)

97 READ (97,100) ( (BM(I,K),K=1,3),I=L,3)
98 READ (97,100) ((CM(I,K),K=1,3),1I=1,3)
99 READ (97,100) (MM(I),I=1,3)

- 100 110  FORMAT(3F7.3)

Conversion of the Model Equations

101 DO 330 I=1,2

102 DO 330 K=1,5

103 330  MB(I,K)=MM(I)

104 DO 120 I=1.6

105 DO 120 K=1,6

106 120  ALFA(I,K)=0.0

107 DO 130 K=1,3

108 130  ALFA(2#%K=1,2%K)=1.0

109 DO 140 I=1,3

110 DO 140 K=1,3 -
. 111 140  ALFA(2*1,2%K=1)=CM(I,K) -

112 DO 150 K=1,3

113 DO 150 I=1,3

114 150  ALFA(2%1,2%K)=BM(I,K) .

115 DO 160 I=1,6

116 160 FM(I)=0.0
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170
180

200

202
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DO 170 I=1,3
FM(2%1)=MM(I)

FM(2*1=1)=0.0

WRITE(99,180) (ALFA(I,K),K=1,6),I-1,6)
FORMAT ("', 10X, '"MATRIX ALFA OF MODEL'//('',6(3X,F11.6)))
WRITE(99,200) (FM(I),I=1,6) ,
FORMAT('',10X,'VECTOR F OF MODEL'//'',6(3X,F11,6)

DO 202 1=1,8 .
DO 202 K=1,8 )
APRCD(1,K)=DBLE (APRC(I,K))
BPRCD (K) =DBLE (BPRC (K) )
FPRCD (K) =DBLE (FPRC (K) )

DO 203 I=1,6

DO 203 K=1,6
ALFAD(I,K)=DBLE (ALFA{I,K))

Organization of Tt Loop

132
133

Chkk

BLOCK 6
TAUC4=TAU

Organization of h Loop

134
135
136
137

Integration

138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156

Chkk
1007

Ckk
1008

410

420

440

BLOCK 7 _
HC4=0.0

HC4=H

NSTB=S*TAU/H+0.5

of "Control" Model

BLOCKS 8,9 INTEGRATION OF MODEL S+1 TIMES

XAD=HC4-H

XED=HC4

151=S+1,5

FM(2)=MB(1,IS1)

FM(4)=MB(2,1IS1)

DO 410 I=1,5

FMD(I)=DBLE FM(I))

DO 420 I=1,4

YOMD (I)=DSLE (MMPU (I,NSTB))

YOMD (5)=DBLZ (MU (1,NSTB))

YOMD (6)=DBLE (MU (2,NSTB))

WRITE(99,44) TAUC4,XAD,XED,FM(2) ,FM(4)
FORMAT(//'','#%*%kx*INTEGRATION OF CONTROL MODEL

FOR TAU="' "
+,F5.1,2X,"8=',F5,1,"'-"' ,F5,1/10%, 'FM(2)=",F11.6,3X, ' FM(4)=",
+F11.6)

CALL PR4MOD (ALFAD,FMD)

CALL DRKU (6 ,WHODM, XAD, YOMD, XED, YKMD,

+5,0.01,2,A)
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- 157 DO 430 I=1,4

) 158 430  MMPU(I,NSTB+1)=SNGL (YKMD(I))

] 159 MU (1, NSTB+1)=SNGL (YKMD (5) )
160 MU (2,NSTB=1)=SNGL (YKMD (6) )

i Integration of "Fictitious" Model

162 WRITE (99,300) TAUC4, XAD,XED
- 162 300 FORMAT('',10X,'INTEGRATION OF MODEL FOR TAU=',
F5,1,2X,'H="',

163 +F5,1,'-",F5.1)
- 164 DO 240 JJ=1,1S1
165 FM(2)=MB(1,JJ)
166 FM(4)=MB(2,JJ)
167 DO 230 I=1,6
168 230 FMD(I)=DBLE(FM(I))
169 ICS1=IS1-JJ+1,1
170 WRITE(99,310)ICS1
171 310  FORMAT('',20X,'INTEGRATION',14,'ROWS(NUMBERS FROM THE TOP)')
172 WRITE(99,450)FM(2) ,FM(4)
173 450  FORMAT('',10X,'FM(2)=',F11.6,3X, 'FM(4)=",F11.6)
174 YOMD (1)=DBLE (MF1 (ICS1,NSTE))
175 YOMD (2)=DBLE (MP2 (ICS1,NSTB))
176 YOMD (3)=DBLE (MF3 (ICS1,NSTB))
177 YOMD (4)=DBLE (MP4 (ICS1,NSTB))
178 USYSO=DBLE (MU (1, NSTB))
179 USYS1=DBLE (MU (1,NSTB+1)) -
180 HD=DBLE (H)
181 CALL FMOD (ALFAD, FMD,USYSO,USYS1,XAD, HD)
182 CALL DRKU (4 ,WNODF,XAD,YOMD,XED, YKMD
183 +5,0.01,2,4)
184 HF1(ICS1,NSTB+1)+SNGL (YKMD (1))
185 MP2 (ICS1,NSTB+1)=SNGL (YKMD(2))
186 MF3 (ICS1,NSTB+1)=SNGL (YKMD (3))
187 MP4 (1CS1,NSTB+1)=SNGL (YKMD (4))

System Integration

188 240 CONTINUE
189  C#** BLOCKS 10,11 INTEGRATION OF SYSTEM

190 USYSO=DBLE (MU91,§STB))

191 USYS1=DBLE (MU (1, NSTB+1))

192 HD=DBLE (H)

193 WRITE(99,320) TAUC4,XAD,XED

194 320  FORMAT('',10X,'INTEGRATION OF SYSTEM FOR',10X, 'TAU=
',F5.1,

195 +'XA=",F5.1, 'XE=",F5.1)

196 DO 250 I=1,8

197 250 YOCD(I)=DBLE(MC(I,NSTB))

207

FOR OFFICIAL USE ONLY -

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200030003-3

FOR OFFICIAL USE ONLY

198 CALL PR4SYS(APRCD,BPRCD,FPRCD,USYSO,USYS1,XAD,HD)
199 CALL DRKU (8,WNODC,XAD,YOCD,XED, YKCD,
_ 200 +5,0.01,2,A)
201 DO 260 I=1.8

202 260 MC(I,NSTB+1)=SNGL(YKCD(I))
203  C*** BLOCK 12

204 IF (HC$.LT.TAU) GO TO 10013
205 GO TO 10014

206 10013 HC4=HCA+H

207 NSTB=NSTB+1

208 GO TO 1008

- Formation of Matrix A

209 C*** BLOCK 14***FORMATION OF MATRIX DELTA

210 IK=S+1.5

211 DO 500 K=1,N

212 DELTA (1,K)=MC (1,K)=MF1 (IK,K)
213 DELTA (2 ,K)=MC (3,K)=MF3 (IK,K)

214 500 CONTINUE
Calculation of the Righthand Sides of the System in the Least Squares Method

215 C#%% BLOCK 15%**CALCULATION OF RIGHTHAND SIDES FOR THE LEAST
SQUARE METHOD

216 DO 510 I=1,3
21.7 BINK(1)=0.0
218 510 B2NIK(I)=0.0
219 DO 520 K=1,N
220 BINK(1)=BINK(1)+(H¥*2)#* (K**2)*DELTA(1,K)
221 BINK(2)=BINK(2)+ (H*K*DELTA (1,K)
222 BINK(3)=BINK(3)+DELTA (1,K)
223 B2NK(1)=B2NK (1)+ (H**2)* (K**2) *DELTA (2,K)
224 B2NK (2)=B2NK (2)+(H*K*DELTA (2,K))
225 520  B2NK(3)=B2NK(3)+DELTA(2,K)
226 WRITE (99, 530) ((DELTA(I,K),K=1,10),1=1,2)
227 WRITE(99,530) ((DELTA(I,K),K=11,20),I=1,2)
228 WRITE (95, 571) ¢ (DELTA(I,K),K=21,25),I=1,2)

. 229 531 FORMAT('',17X,'DELTA MATRIX FOR THE LEAST SQUARES METHOD'/

. (l ] 5 .
230 +(1X,F11,53))
231 530 FORMAT('',10X,'MATRIX DELTA FOR THE LEAST SQUARES METHOD'
/(¢'',10

232 +(1X.F11,6)))
233 WRITE(99,540) (BINK(I),I=1,3)
234 WRITE(99,550) (B2NK(I),I=1,3)

235 540 FORMAT('',10X,'LEFTHAND SIDE OF THE LEAST SQUARES M‘ETHOD' 'Bl'
/(' ,3(5%,F11

236 1.6)))

237 550 FORMAT('',10X,'LEFTHAND SIDE...B2'/'',3(5X,Fl1.6)
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- 239
240

Calculation

261
242
= 243
2644

Calculation

245
246
247
248
249
250
151
252
253
254

Calculation

255
256
257
258
259
260
261
262
263
264

265
266
267
268
269
270
271

272
273

Chik

560
570

Chhk

591
590

580
Chik

600
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BLOCK 16***OBTAINING THE COEFFICIENTS OF PARAROLAS
CALL MAMURA (DMUOBR, BINK,ALFANK,3,3,1)
CALL MAMURA (DMUOBR, B2NK, BETANK, 3,3,1)

of the Coefficients of the Parabolas Gl(t), 89(t)

WRITE (99, 560) (ALFANK(I),I=1,3)
WRITE(99,570) (BETANK(I),I=1,3)
FORMAT ("', 10X, 'COEFFICIENT OF PARABOLA ALPHA'/'', (5X,F11,6))
FORMAT ("', 10X, 'COEFFICIENT OF PARABOLA BETA'/'',(5X,F1l,6))

of the Disturbances fj, f, for the Model

BLOCK 17#%*CALCULATION OF DISTURBANCE FOR THE MODEL F1
FM(2)=MB(1,1)+2.0*ALFANK(1)
FM(4)=MB(2,1)+2.0%BETANK (1)

DO 590 I=1,2

DO 591 K-1,4

MB(I,K)=MB(I,K+1)

MB(1,5)=FM(2*1)

MB(1,5)=FM(2)

MB(2,5)=FM(4)

WRITE (99,580) (FM(L),I=1,6)

of New Initial Conditions of the Model

FORMAT ('',10X,'NEW VECTOR F OF THE MODEL '/'',6(5X,F11,6))
BLOCK 18%**CALCULATION OF NEW INITIAL CONDITIONS OF THE MODEL
STH=S*TAU/H+0,5

SITH=(S+1)*TAU/H+0. 5

KSTH=STH

KSITH=SITH

KS1=5+1,5

MF1(I,KSTH)=MF1(KS1,KS1TH)+ALFANK (1) *T#*% 2+
+ALFANK (2) #*T+ALFANK (3)

MP2(1,KSTH)=MP2 (KS1,KS1TH)+2.0*ALFANK (1) *T+

+ALFANK (2)

MF3(1,KSTH)=MF3 (KS1,KS1TH)-+BETANK (1) *T#** 2+
+BETANK (2) *T+BETANK (3)

MP4 (1,KSTH)=MP4 (KS1,KS1TH)+2. 0*BETANK (1) *T+
+BETANK (2)
WRITE(99,600)MF1 (1,KSTH) ,MP2{i,KSTH) ,MF3(1,KSTH),

MP4 (1,KSTH)

FORMAT ('',10X,'NEW INITIAL CONDITIONS OF THE MODEL'//®
'YL (S+HL)=",F1
11.6,2X,'Y2(s+1)=",F11.6,2X,'Y3(5+1)=",F11.6,2X,
'Y4(S+1)=",F11.6)

1C4S=IC4S+1

II=S+1.1

IF (IC4S-11)20000,20001,20000
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274 20001 WRITE(99,20002)TAUCA,IC4S
275 20002 FORMAT(//'',10X,'TAU=',F5.1,5X,'IC4S=',12)

} 276 1C45=0
277 WRITE((9,610)TAUCS
278 610 FORMAT(///'',10X,'PRINTOUT OF THE MATRICES AFTER TAU=',
F5.1,10%,
279 +1#kk DO SDVIGA®#%)
280 CALL PRINT2 (MMPU,MF1,MP2,iF3,MP4,MU,MC N,5)

Shift of Matrices MF1, MP2, MF3, MP4

281  C#%% BLOCK 19***OBLIQUE SHIFT OF THE MATRICES MF1,MP2,MF3,i24
282 2000 W=TAU/H

283 W=W+0. 5

284 KR=W

285 SI=5+0.5

286 ISR=S1

287 IN=ISR+1

288 M=KR* (LSR+1)

289 CALL ZERNO (MF1,IN,M,ISR,KR)
290 CALL ZERNO (MP2,IN,M,ISR,KR)
291 CALL ZERNO (MF3,IN,M,ISR,KR)
292 CALL ZERNO (MP4,IN,M,ISR,KR)

Shift of the Matrices MC and MU

293  S*%% BLOCK 22%**SHIFT OF THE MATRIX MC

a 294 CALL PERNO(MC,8,M,ISR,KR)
295  C*x%% BLOCK 24 CDBIG MATP. MU
296 CALL PERNO (MU, 2,M, ISR,KR)
297 CALL PERNO (MMPU,4,M,ISR,KR)
298 MMPU (1, ISTH)=MF1(1,KSTH)
299 MMPU (2 ,KSTH)=MP2 (1 ,KSTH)
300 MMPU (3 ,KSTH)=MF3 (1,KSTH)

Formation of the Matrix of Imitial Conditions of the Model

301 MMPU (4 ,KST; =MP4 (1,KSTH)

302  CH*% BLOCK 25%<%1ILLING OF THE MATRIX MHY
303 NSTB=TAUCA / TAU+1

304 LKON=S+1,5

305 MHY (1,NSTB)=MF1 (1,KSTH)

306 MHY (2,NSTB)=MP2 (1 ,KSTH)

307 MHY (3, NSTB)=MF3 (1,KSTH)

308 MHY (4 ,NSTB)=MP4 (1,KSTH)

309 MHY (5,NSTB)=MU (1 ,KSTH)

310 MHY (6 ,NSTB)=MU (2, KSTH)

311 WRITE(99,790) ( (MHY (I,K),I=1,6),K=1,LKON)

312 790 FORMAT('',10X,'MATRIX MHY (BY COLUMNS)'//('',6F11.6))
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313 C#%% BLOCK 26

314 BW=RO* (S+1.0)*TAU

315 IF (TAUC4,GE,BW)GO TO 10000
316  C*%*% BLOCK 27

317 TAUC4=TAUC4+TAU

318 GO TO 10007

319 10000 STOP

320 END

Formation of the Algorithm Memory

321 SUBROUTINE PERNO (MASS,N,M,S,K)
322 REAL MASS (N,M)
323 INTEGER S,K,PAR
324 DO 20 PAR=1,S
325 DO 20 I=1,N
326 K1=1+(PAR=1) *K
: 327 K2=K+(PAR=1)*K
328 DO 10 J=K1,K2
329 J1=J4K

330 10 MASS(L,J)=MASS(I,J1)
331 20 CONTINUE

332 N2=M=K+1

333 DO 40 I=1,N
334 DO 40 J=N2, M
335 40 MASS(I,J)=0.0
336 RETURN

337 END

Auxiliary Programs (Printout of the Files)

338 SUBROUTINE PRINT2 (MMPU,MF1,MP2,MF3,MP4,MU,MC,N,S)
339 REAL MF1(5,25),MP2(5,25),MF3(5,25),MP4(5,25)
340 REAL MU (2,N),MC(8,N)
341 REAL MMPU (4,N)
342 IS1=S+1.4
343 WRITE(99,80)
344 80 FORMAT (//'',10X, "MATRIX MMPU')
345 WRITE(99,20) ((QRMPU(I,K),K=1,10),I=1,4)
346 WRITE(99,20) ((MMPU(I,K),K=11,20),I=1,4)
347 WRITE (99, 21) ((MMPU(I,K),K=21,25),1=1,4)
348 GO TO 100
349 WRITE (99,10)
350 10 FORMAT(//'',10X, '"MATRIX MF1')
. 351 WRITE(99,20) ((MF1(I,K),K=1,10),I=1,IS1)
352 WRITE (99, 20) ((M B (I,K),K=11,20),I=1,IS1)
353 WRITE(99,21) ((MF1(I,K),K=21,25),I=1,I51)

354 . 20  FORMAT(/'',10(1X,F11.6))
355 21 FORMAT(/'',5(1X,F1l.6)
- 356 WRITE (99, 30)

211
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357 30 FORMAT(//'',10X, '"MATRIX MP2')

358 WRITE (99, 20) ((MP2(I,K),K=1,10),I=1,IS1)
359 WRITE (99, 20) ( (MP2(I,K) ,K=11,20),I=1,1I51)
360 WRITE(99,21) ( (MP2(I,K) ,K=21,25),1=1,151)
361 WRITE(99,40)
362 40  FORMAT(//'',10X,'MATRIX MF3')

, 363 WRITE (99, 20) ( (MF3(I,K) ,K=1,10),1=1,1IS1)
- 364 WRITE (99, 20) ((MF3(I,K),K=11,20),I=1,1IS1)
- 365 WRITE(99,21) ((MF3(I,K),K=21,25),1=1,151)

366 WRITE(99,50) :
367 50  FORMAT(//'',10X,'MATRIX MI4')

368 WRITE (99, 20) ( (P4 (1,K) ,K=1,10),1=1,151)
369 WRITE (99, 20) ( (MP4 (I,K) ,K=11,20),1=1,1S1)
370 WRITE (99, 21) ( (MP4 (1,K) ,K=21,25),1=1,151)

371 100 WRITE(99,60)
372 60 FORMAT(//'',10X, 'MATRIX MU')

373 WRITE(99,20) ((MU(I,K),K=1,10),1=1,2)
374 WRITE(99,20) ( (MU (I,K) ,K=11,20),1=1,2)
375 WRITE(99,21) ((MU(I,K),K=21,25),1=1,2)
376 WRITE(99,70)
377 70  FORMAT(//'',10%,"MATRIX MC')
378 WRITE(99,20) ((MC (1,K),K=1,10),1=1,8)
379 WRITE(99,20) ((MC(I,K),K=11,20),I=1,8)
380 WRITE(99,21) ((MC(I,K) ,K=21,25),1=1,8)
381 RETURN
382 END
383 SUBROUTINE WHODM(F,N,X,Y)
384 REAL*8F,X,Y (15) ,ALFA(6,6) ,FMD (6)
385 GO TO 100
- 386 ENTRY PR4MOD (ALFA,FMD)
387 RETURN
388 100 F=0.0DO
389 po 10J=1,6
390 10  F=FH+ALFA(N,J)*Y(J)
391 F=F+FMD (N)
392 RETURN
393 END
394 SUBROUTINE “NODF (F,N,XY) _
395 REAL*8F,X,Y (.5) ,ALFA(6,6) ,FMD (6) ,USYS,USYSO,USYS1,
XAD, HD
- 396 GO TO 100
397 ENTRY FMOD (ALFA,FMD,USYSO,USYS1,XAD,HD)
. 398 RETURN
399 100 F=0.0DO
400 USYS=USYSO+(X=XAD)* (USYS1=USYS) ) /HD
401 DO 10J=1,4 :
402 ° 10  F=F4+ALFA(N,J)*Y(J)
- 403 F=F+FMD (N) +ALFA (N, 5) *USYS
404 RETURN
405 END
212
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406 SUBROUTINE WHODC (F,N,X,Y)
407 REAL*8F,X,Y(15), APRC(8,8), BPRC(8), FPRC(8), US™S,
i USYS0, USYS1,
408 +XAD, HD
409 GO TO 100
410 ENTRY PR4SYS(APRC,BPRS,FPRS,USYSO,USYS1,XAD, HD)
411 RETURN
- 412 100 F=0.0DO
413 D0 10 J=1,8
414 USYS=USYS0+(X=XAD) * (USYS1=USYS0) /HD
415 10  F=F+APRC(N,J)*Y(J)
- 416 F=F+BPRC (N) *USYS+FPRC (N)
417 RETURN
) 418 END

Example. Let the object of control be given by the equation (3.20),
in Chapter 3 where

/ 18 —1,0 —1,0.—1,0 0 —0,005 0 0
A 0 1,0 0,102 0,765 pe 0—0,007 0 0 ]
~0,1 0007 10 o J'°Tlo o —o,08 o '
~0,138 0,073 0 1 0 o 0 —0,002/
0 —46 0 0 © /—0,044 0,05 ‘
o 0 0 0 0 o —0,385 . 0,00}
0 0 —6,2 0 T 0 Tl
0 0 0 —7,13 .0 0

51(0)=0,001; s,(0) =0,002.

The remaining components of the initial vector are equal to zero.

The calculation with respect to the function W(p2)=¢k(p2)/¢0(p2) indicates
that the investigated object is structurally unstable and naturally
dynamically stable.
The equation of the control system is taken in the form

0,015 - 0,2z +u=10,8) + 9’2.4; —0,022 —0,012

The remaining control parameters have the following numerical values:

T=6 sec (length of the analysis segment); 1=1.4 sec (length of the adjust-
ment segment); s=4 (number of adjustments of the model in the analysis
segment), ‘

The transition piocesses in the investigated system have the form indicated
in Fig 4,17, where the behavior in time of the generalized coordinates u(t),
y(t), respectively, is depicted.
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The investigated example has the purpose of noting two facts:

The process of adaptation of the model to external disturbances (the
step curve in Fig.4.16, b);

e T =1,
, 5=
<Pt £(t)
’
4
0,0110,05 [ﬁ__
— \ u(t)
/ \\rﬁ _+ S I
l[‘ N s ‘/\\"/’_, — e e e —
/Z X 1
a 5 [— 20 t
—_—
\

Fig 4.17. Typical nature of the transient processes in the
stabilization mode of the space vehicle with a
discrete model

Possibility of stabilization of a structurally unstable object using an
- adaptive model with relatively small damping coefficients:

1 == 0,003; 3 - 0,002.

As is obvious from Fig 4.17, the closed system is stable, the transient
process in practice ends after 12 seconds. The characteristics of the
transient process can be improved when necessary by selecting the values
of the controlling constants.

For comparison let us calculuced the required values of coefficients €j
insuring stability of the closed system for the "classical" method of
control, Using formuics (1.55), we find that e=e9=0.1.

It is possible to insure the corresponding damping by the existing means

only by substituting quite powerful (in the sense of mass) baffles in the

tanks with the liquid fuel, which frequently is undesirable.

The application of digital filters therefore presents additional possibil-
- ities for attenuating the effect of the structural instability in cases

where the composition of the object turns out to be insufficiently
successful. ~
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It is essential that in the proposed theory and the investigated examples
the stabilizability criterion as characteristic of the possibility of

phase stabilization of the space vehicle does not depend on the specific
parameters of the control system, but is determined only by the characteris-
tic parameters of the system considered as the object of control.

This fact also determines the possibility of its use in the initilal steps
of design of the space vehicle under the conditions of incompleteness of
information about the stabilizatien system (the control system is created,
as a rule, for a "finished" object).

As is obvious, not all of the compositional layouts of the space vehicle
are identically favorable from the point of view of dynamics. For example,
the use of toroidal (in general, biconnected) fuel tanks in practice
exclude stabilization of the space vehicle in the active segment without
structural modification of the fuel tanks (installation of oscillation
dampers) or complicated of the stabilization system.

It is known that the alignment of the space vehicle, being by definition

a static characteristic of the object, essentially also influences its
stabilizability. The objects with upper or lower alignment are, as a rule,
more improved in the dynamic sense than with intermediate alignment.

The unfavorable dynamic properties of a number of compositional layouts
of space vehicles (natural and structural instability) require additional
measures both when developing the object directly (the space vehicle
directly) and when developing the control system. The analysis presented
in sections 4.3 to 4.4 permits formulation of these requirements on the
part of selecting both the damping coefficients and the parameters of the
automatic stabilization system. 1In a numb er of cases these requirements
are far from simple and obviously require theoretically new solutious,
for example, the development of other stabilization principles.
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CHAPTER 5. STABILIZABILITY AND STABILITY OF SPACE VEHICLES IN THE
ACTIVE SEGMENT OF FLIGHT

Approximate Method of Investigating the Stability of Space Vehicles.
Amplitude and Phase Stabilization

Conversion of the Equations of Motion of a Space Vehicle

The system of equations (3.24) of the controlled movement of a space vehicle
in the active segment is written in the following form:

Ax-teBi+tCr="u;

u=Z, (")~ Ly(2%), 6.1)
where

x=(z, q‘y Siyerey sm qlr"'v ‘Im);

-E.‘P‘_:(O’ $, 0,..., 0, Grse oo qm), -E;=(Z, $, 0,..., 0, Gurees q'")

are the vectors of state and observation of the system (5.1);

F=(~azus —"a&'{uto yerey 0, '—’amuv";' -aﬂm“);
Z=(0, 1, 0,00y 0, —Tppuen, —Tim);
Ezz(o 1, —‘(xo"“xc), 0.---7 01 ﬂ'p---: T'I’Il)

are the constant vecto.s >f the same dimensionality (n=kim+2),

On the basis of equations (3.24) the matrices A, B and C have the form

1 0 sy e Gy O . O

0 1 ay, ... ag, O 0
: Qg2 s,y 1 [ 9 Qsiq, " aflﬂm
A= : : A : . : s
nXn a‘k’ aski, 0 1 Tgd, - a,k,,"
agsy .. Bas 1 0
0 0 s LA 0 1
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0 —a,, O 0 0 0
0 0 0 0 o 0
. 0 0 —df 0 0 0
nxn 0 0 0 ,,,‘—OZ —-u)?”_ 0
] 0 0 0 . 0 0 — Wy
B=diag(0, 0, —es,ce, —Eg —Egppeery —%q, )
‘ Let us reduce the equations (5.11)"to normal form
. TpeB It C=h 52
ll=L1('\DO)—L2 (Zo)i
calculating the matrices ’

B,=A-1B; C,=A-1C; b,— A=h.

Considering the smallness of the cross relations in matrix A and also the
structure of the matrix B, in the transformed matrix By let us retain
only the diagonal terms:

B,=dag(0, 0, —as 25,00 —8gEgy —QgEqeee —~a, &, ) (5.3)
where agys 8gy are the diagonal terms of matrix A-1 corresponding to
the two investigated groups of oscillatory elements:

: (Streer SO)& (Groeerr G-

Let us assume that the roots of the characteristic equation

|C,—NE|=0 (5-4)
are real and different:
~ ~3
h=—wl hy=—wl; A= o, )\‘71: —uj;

i=1,2,,.., b j=1, 2,..., m.

In this case a nondegenerate transformation exists

x=Ty:
foo by | basyootssy Frgy oo kg,
oz fyy _t""‘"‘t""k boqy, oo by,
Ion fog fovtreotong)] gy wotsug,

(5.5)

bz by |tsgsieetoys) Esgan oo tan b

tlhz tq:"@

tql-"l"'t015k 'tﬂlh"'t‘hqm
R . N . eet

tgnztany tapsieetays, Yy taa,

t¢¢=t:x=l; t;l;‘.=1; i=1, 2,..., k, tq}qj=1’ j::].y 2,---: m,
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reducing system (5.2) to canonical form
_’j=A.7/.+ B,y +E;”?
- VO (5T
=Ly (4))— Lo ( 2%); %=(qu 5 ¥r=(¢x W)

where

2 ] =2 -2 2 T __r—1p
A=dlag (—“’3. — Wy, —Iyeiey TR T W "“’m)1 bk_T 1By

and E , fz are the observation vectors of the system (5.1) calculated on
a new base. The expressions for Ew, Ez are more specifically defined below.

The further problem consists in investigating the canonical system (5.6)
- in order to find the conditions of stability of the space vehicle in the
oscillation fraquency range of the fuel in the compartments {04} and the

elastic oscillations in the structure {w:}.

Here it is desirable to con-

}
sider the mutual effect of the correspon&ing partial systems on each other

and also the influence of certain additional factors.

Effect of the Fuel Mobility in the Compartments on the Stability of a

Space Vehicle

Let us exclude the z-coordinate and the generalized coordinate qj,.«->dp
from the investigation. The canonical system (5.6) will be obtained in

the form - . .
y=Ay+ eByy + bits
u=1L(v),
where A—diag(—e?, —ol —Fer —a) B=T"15;

U=‘Pg=( '?’—’j )' ?;‘-(1’ ysyaeee t#sk)v

and the formulas relating the initial (x) and canonical (y) variables

have the following form on the baris of expression (5.5)

. Y=y t‘ls.yl+-'l'+tq"ky";
si= swfet gt Thosde

sp=isgYu-tlss it e

Let the following representation be admissible for the operator L(v) in

the frequency range of © 2 (4=1,2,...,k):
i

7 CLe)=L(pv=(btbp)e,  (5.9)

where
ko=(3)=A(3;) cos p(3;); k (’1)=A—(:1)— sin g(9;).
i
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In order to estimate the mutual effect of the partial systems correspond-
ing to the indexes k, kt+l, on the one hand, and the partial system
corresponding to the index y (the angular movement of the system), on
the other, let us consider instead of expression (5.7) the simplified
system

Yo baliyl- Boutti

'T'.'::"?y'"}_g""u; v=Ty; (5. 10) -
Yo=—0alja -+ Bsuld;

u=L(p)v,

where the dissipative terms are omitted.

For simplification of the notation it is also accepted that o4 and then
wi now denote the natural frequencies of tha system (5.1) and not the
partial ones as was assumed in the initial system (5.1). -

The characteristic equation of the system (5.10) comsidering the expression
(5.9) will be represented in the form

—(kot+Aip) . as? as}

— (kg kp) B P2 O, (5.11)
— (ko+ k10) Bs,u 0 pto

where : . Xz‘-?‘l“l'l't%xshu"[“‘t\'{:,?s,u; al==l‘¢s,, a2=fq,_,‘.

Let us set

. Pr= —3?—{— Ap. (5.12)

Then with accuracy to the terms of second order smallness
; Ap 5.13
p—ldl—la—. ( )

Substituting expressions (5.12) and (5.13) in the determinant (5.11), {1
the first approximation we obtain.

Ap [-—-cl—klt_*_ 'Zala q s,u+ 2 q k@s,u-{ iogkgr— I

2 [} 2

koaI‘15; a103kem B 305k,

W |0 Sy 2 s,u —}—aclz +

1921850
20y af— o} ag— 91 '

+ iasth,o,8s,u=0. . (5. 14)

Setting Ap=Bf+ic, for determination:.of the values of B and o we obtain
the following system of equations:
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-

a(-1+) 420 ) L a0
lo (1 ) -a (e ) okau=0,

(5.15)
L

2
as] ~ azdy
where == " +;-§T‘T:_:‘p:‘u’* u'g'__ G% BS.H-

Finally, the formulas for calculating the real and imaginary paris of the
root pj§ with the imaginary parts closest to the partial frequency Gj
- assume the form

Re,,l-_:z_‘:_l; Imp,=.é%l. S (5. 16)

The values of o and B are solutions of the linear system of equations (5.15)
in which the parameters

oy ()= A(w) cOs 9 (o) ko(0)= - A(0) sine(®)
are calculated for values of w=0y.

The formulas for calculating the real part of Rep have analogous form;

it is only necessary to calculate the parameters ﬁ(w), A(w) in the
- equation (5.15) for values of w=0,.

In a number of cases the system of equations (5.15) permits some simplifica~
tion. For example, let us assume that the connectedness of the partial
systems corresponding to the frequency oj and gp is small, that is, the
following inequalities are satisfied

a0 aoy .|,
——3 85 <1 T2 B K 1 (5.17)
1 27

2
93¢ g

In formulas (5.15) let us set Q=—X. We find

aoer) pgfAr g Aobeu) .
a( ' °i)+3(°? ey [ e

. Aa B '
_a<% -2_;-1‘_)_{.@(1.{_—;%):@3@5,“ (5.18)

1

Then let the connectedness of the partial solid state (Y)-1iquid (si)
systems be small:

Aad
I—l_'l-_ osu
a; + a

el A (5.19)

B
=L
9y
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The formulas (5.17) for calculating o and B8, I¥1,2 a B greatly simplified
and assume the form

— g .
G;=a, Aq:’f’slu- Bi= aiBug.\',u'

The expressions for Repy, Im pj vary correspondingly:

A (9; u a;B(9;)Bsyu P 00
Rep= 20000 gy SECEE (11, 2 (5.20)

Since

A (o)=—-Im[L (i)},

then from the formulas (5.18) it is clear that the stability of the space
vehicle in the frequency range of the oscillations of the fuel essentially
depends on the phase shift of the regulator L(v) on these frequencies,

Example. Let the numerical values for the coefficients of the system of
equations of disturbed motion of the space vehicle (1.6) for i=1,2
be as follows:

4y, = —0,0152; a;,= —1,2650; o}=32,810;

2, = —0,2202; ag,= —2,000; of=:41,1210;
i @yg, = —0,0056; a, = —1,500; a,,=—15,580;
a4, = +0,0099; ag,=3,0330; au= — 2,7630;
. @y, = —3,0010.

The automatic stabilization system of the space vehicle is given by the
equation . ) ) .
0,0098u 40,1260z 4 « == 10,504 - 6,309,

so that in the given case

10,50 + 6,30p
0,0098p2 +0,12%6p -1 °

W(p) =

The coefficients of the canonical form of (5.10) are as follows:

of ==33,970; g = tyg, =+ 0,003 By, = —0,3010;

=
a2 =43,630; ay~ tys, == 0,0098; 3, , = —1,1775;
- 85,0 = — 0,3035.

Let us present some intermediate results:

ky (91) == 2,.930; /20 = 34,4580; ay == 5,8280;
ky(02) = 2,239; ko ==39,7920; o, = 6,6070;
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The coefficients of the system (5.15):

ko _ kr:,‘ klula.g.u .
—_  — —_— =0, 120;
1+ = 0,6330; ” + o ]
alklﬁfis.u == — 0,0908; alklﬁhu = - 0,2170.
Table 5.1
1) (2) (3) (%)
Kopuu Toukoe 3uayeHne dopuyna (5.18) ¢opmyna (5.20)
P —0,0193+5,8335¢ —0,0187 +5,8620: ‘ —0,0102 +5,9480i
po —0,0066 +6,6187i —0,0064+6,6160i . | —0,0033+6,7260i
Key:
1. Roots 3. Formula (5.15)
2. Exact value 4. Formula (5.20)

The results of calculating the roots are presented in Table 5.1,

Comparing the exact (calculated on the digital computer) and approximate
values of Re pj (i=1,2) calculated by formula (5.15), it is possible to
see that the error in the given case does not exceed 5%.

Then it is necessary to discuss the relation of the structural stability
of the space vehicle and its stability understood in the classical sense.

Let the conditions (5.17), (5.19) be satisfied approximately. Then in
the general case, on the basis of the expression (5.20)
@ =tys 35,49k (3;).
The criterion of structural stability of the space vehicle in the given
case applied to the system of two oscillators sj and s, has the form
sign ({ys, s ) =SigN (til'.r,,?s.u‘)- . (5.21)

In the given case, siuce
by Bsu=—0,18-10"2<C0 £y Bsu= —0,30-10-2K0,

the condition (5.21) is satisfied and, consequently, for stability of the.
space vehicle on the investigated frequencies 01, 0y, the phase lead of
the automatic stabilization system on the following frequencies is
required :

sing(a,)>0; * sing(3,)2>0. (5.22)

Since for the given control system kj(07)=2.931>0; kq(05)=2.239, the
condition (5.22) is also satisfied.
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Consequently, the noncontradictory nature of the phase conditions for the
object of control on frequencies of 01, @ [the equality (5.21) ~-
structural stability of the space vehicle“on the frequencies] in the given
case also indicates (on the basis of expression (5.22)) its stability in
the classical sense,

Consideration of Elasticity of the Space Vehicle Structure

The canonical system (5.6) of equations of motion of the space vehicle will
be written in the form

Yo=Mygy -+ Syutt;
.;jsl= _G?ys, +|es/uu;
Goy=—0iy0,+ by uts A (5.23)
> v=", y; .
where t=L(p)v,
T= (1Nt 40 tys, n}tqls,,..., tyg,—1)).

The calculations analogous to those presented above lead to the following
approximate expressions for disturbances of the natural values of 1% v
caused by the effect of the control system (the automatic stabilization

system): >
Rep -——(l“l_'q;t‘ljsi) Bkt (o1) .
S !
) j 2:,” ko (<) (5.24)
(t‘P’;_"}tq;si syuko (s
[m ‘D*"l: -
. in the frequency band of the oscillations of the liquid filling the tanks
and |
Rep __(lqaq,.—n,)ﬁqjuko(w,)'
g =}
‘ 2;’;’» ko (w)) (5.25)
— (‘\'Wj—'n] q 0 (0)
Im Pa;= U

in the frequency band of the elastic vibratioms of the structure where, just
as before, we have the following notation

A@)
Q

ky(Q)=A(Q)cos2(Q); £ (2)= sin 9 (2).

The coefficients entering into expression (5.24), (5.25) have the following
physical meaning:

tll’si are the coefficients characterizing the connectedness of the partial
solid state-liquid systems (i=1,2,...,k);
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t¢q' are the coefficients characterizing the connectedness of the partial
]
systems corresponling to the oscillations of the space vehicle as a solid
state and the elastic vibrations of the space vehicle structure (j=1,2,...,m);

tq‘si are the coefficients characterizing the connectedness of the partial

systems, one of which corresponds to the j-th form of the elastic vibrations
of the space vehicle hull, and the other, the basic body of the fuel
oscillations in the i-th compartment;

n:' is the derivative form of the elastic vibrations of the space vehicle
structure at the point of installation of the measuring elements (the
gyroscopic angle cage). The following situations are of practical
interest:

Lo D Mtee] =1 2ees B (5.26)

Simplifying the formulas (5.24), we find

f;;,Bs..,,kx (ap) L;;‘asinkl (e1)

Re pg= %7 y M Py = 2

and, as is obvious, we obtain the same relations as in the preceding
section. Thus, the condition (5.26) can be used as the criterion of
applicability of the simplified canonical system (5.10).

In the given case it is possible to neglect the elasticity of the space

- vehicle hull. The stability of the space vehicle in the frequency range
of oscillations of the fuel is basically determined by the connectedness
of the partial space vehicle systems as solid state-liquid systems.

2. \tqull ~ |'ﬂ}lq,s,l-

- The stability of a space vehicle in the frequency band of the fuel oscilla-
tions is determined by the connectedness of the partial solid state-liquid
systems -- the hull -iasticity. For the calculations it is necessary to
use the formulas (5.:%) or more exact expressions presented at the end of
the section.

3 ] KIMEagal

Simplifying formulas (5.24), we find

_ n}tql;lpqu‘o("l)
—

- AR
] m%=———%r——;m%=
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_ In this case the signs of the expressions
fqu-‘ &' (—n}’qj.\',)

do not coincide, the effect of the variation of the structural properties

of the object of control in the frequency band of the oscillations of

the 1iquid filling the compartments caused by the effect of elasticity of -
the space vehicle structure is observed. The possibility of this effect
essentially follows from the example in Chapter 3: it is required that

the parameters of the space vehicle lie within the limits corresponding to

the crosshatched regions in Fig 3.25,

Thus, the effect of the j-th form of the oscillations of the space vehicle
structure on its stability in the vicinity of the frequency of the principal
tone of the fuel oscillations in the i-th tank is determined by the

value of the parameter

x,,::::”tqj:/t¢s“
where the following values correspond to cases 1-3:

&l oo~ x>

The reverse effect ("liquid" on "elasticity") is small, as the numerical
analysis shows, and for calculation of the corrections to the eigenvalues
of the system in the oscillation frequency range of the hull in the first
approximation is possible to use the expressions

ﬂ}ﬂq k1 (0)) . 1]’3 kg (0)) -
= i . = Jrrepto 1)
Repq]__-_T, mp"/__—é——" ]

Based on expression (5.24)-(5.25), let us consider the problem of the
"amplitude" and "phase" stabilization of the space vehicle.

From expressions (5.24)=(5.25), we have the conditions of stability of
a closed system:

- (t‘x"-‘,j— n;'tqlsi) asiukl (5‘») < 0 (5. 27)
in the frequency range of oscillations of the liquid filling the tanks;

(t'f*q]'—’n}') nrﬁlll-ukl(("j)<o (5' 28)
in the range of frequencies of other vibrations of the spacecraft hull.

Let us write the equivalent of the conditions of structural stability for
the systems (5.1):

sign {(fys,— Wita;s;) 35, == const (5.29)
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in the frequency range of 04 (i=1,2,...,k) and
sign [(fyq, — ;) 3;u] = const (5.30)
in the frequency range of wj(j=1,2,...,m).

In the given case the following relation exists between the structural
stability and the stability of the space vehicle understood in the classi-
cal sense.

In the absence of information about the control system L the signs of the
expressions

Lw+n%10%wi=1,zuuk (aq—nj%wi=d,2"nm
LA Y AL J j1v4j

determine the requirements on its phase characteristic ¢(w), beginning
with the necessity for insuring the conditions of stability of the space
vehicle (5.27)-(5.28).

For the given characteristics of the control system L, that is, for the
known signs of the expressions

ky (ai)=i] Asinp(a); kyo))= 2= Asin o (w)
W ]

for each i, j it is easy to check the satisfiability of the inequalities
(5.27)-(5.28). 1f, for example, the phase conditions of the control system
are "uniform," that is, if

By (3) =0, k() =0
for all i=1,2,...,k, j=1,2,...,m, then the structural instability of the
space vehicle simply means its instability in the classical sense.

Thus, if the parameters of the control system L and the space vehicle are
such that for some i (cr j) the conditions (5.27) or (5.28) are satisfied,
then we talk about the "phase" stcbilization of the space vehicle on these
frequencies.

The failure to satisry :he phase conditiors of stabilization of the space
vehicle on any freque.c:’?s means the necessity to insure its amplitude
stabilization. By this we mean the following.

Denoting the diagonal elements of the matrix of dissipative forces By
beginning with the third by Ysps 9V qu,..., Yq ,» we obtain the
m

following analogs of the expressions (5.24)-( 5.25):

s, (l(# 5 q}tqlSl) Bs‘-ukl (@)

UL ,'=L2qu; 5.31

Re p;, > o i . (5.31)
Y t. —’ll)ﬂ WACY) I ’

Re pyy=——" ez ;quj___ L j=1 2., m, (5.32)
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from which we immediately have the conditions of stability of the
space vehicle

Ys, > (twi - n;’tq;xl) p:,'ukl(’l) (5' 33)

in the frequency band of the fuel oscillations {o;} and
Yo; > (ta,— ) Baukr (0)) (5-‘34)

in the frequeicy band of the elastic vibrations of the spacecraft
structure (wj).

Since Y31>0’ Yq >0 with respect to the meaning of the problem, then the

inequalities (5.33)-(5.34) have meaning under the assumption that the
system (5.1) (without damping) is unstable (the structural instability
effect). On satisfaction of the conditions (5.33)=(5.34), it is said that
the amplitude stabilization of the space vehicle will be insured in the
investigated frequencies.

In practice the amplitude stabilization of the space vehicle on the frequencies
of the fuel oscillations is insured by introducing special intertank devices
(various types of baffles). The damping ' of other vibrations is, as a rule,

a less controllable factor.

In conclusion to this section let us present more precisely defined formulas
for the roots of the characteristic equation of the system (5.1), close to
the partial values of oj and w, and differing from expressions (5.24), (5.25)
by total consideration of the éffect of all m forms of elastic vibrations

of the space vehicle hull on the stability in the investigated frequency
band:

/ m . m
| f‘:rl"/’q;s,) Bspuki (21) . (’4‘31_121"1t41-'1) Bspu
(l’ = 2“1 M :l =3J|— 2

(5.35)

in the range of partial frequencies 010,...,Uk0;

m
(1§ ol
k=1

4= 2u0j !

m
(f'w’ - 1:2-4 ‘qkql) 3(/]-14/?0 (w))

2

(5.36)

u)]=u)/—

in the range of partial frequencies of wlo,...,wmo.
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The values of kj(0;)3 kg(og)s kl(wj); ko(wj) are calculated by the method of

successive approximations beginning with the initial values of ky(¢ 0),
0 0 0 171
ko(ci ) kl(wj ), ko(mj ).

Stability of the Space Vehicle with Angular Position Control System
(Nonlinear Case)

Let us investigate the characteristic situation where the instability of
the space vehicle in the frequency range of the fuel oscillations is
caused by the effect of the automatic stabilization system (the case of
structural instability of the space vehicle).

The system of equatioms of the controlled movement of the space vehicle
in the active segment will be written in the following form:

Af+eBi+ Cx=bu; (5.37)
u=L(¢2), (5.38)
where ;: (2, Py Sty -0 Sm); 3='(am, Qyu 0,..., 0)»

and the matrices A, C, B are defined in Chapter 3.

Let us reduce the equation (5.37) to the normal form

?‘é‘*‘ SBx;‘é’l" Cu;= b-;u; . (5 39)
u="L(x,), (5.40) -
calculating the matrices :

By=A-'B; Cy=A-'C; b,=A-1b. (5.41)
Considering the structure of the initial matrix B, let us neglect the

nondiagonal terms of the matvix obtained By. We obtain the following
representation of this matrix:

E =diag(0' 0,—dunen, ..., '_ammem), (5 42)
where 4.. are the dicgonal terms of the matrix A"l corresponding to m
additioglgl oscillatore in the system (5.37)-(5.38).

Let us propose that the roots of the characteristic equation |CH+A2E|==0
are real and different: }‘z="”z23- Aw=-w¢, s Ai=-cu12, i=1,2,...,m
In this case there is a nondegenerate transformation §=TS'* reducing the
system (5.39)-(5.40) to the canonical form : !

‘ T=Ay+eBuj+ bt (5.43)
- u=L(7'y), (5. 44)
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where ) .
?=(l¢29 1: t\"ll'"v t‘l‘m); b";—T"1b;
A=diag (—o% —u}, —ol..., —uf).

Just as above, neglecting the nondiagonal terms in the matrix By, we
obtain

m . m
B"_—:diag (0, 0, Eg”?-jy---, Zg"UE])' (5.45)
st j=i

In the system (5.43)-(5.44) we proceed to the new coordinates
L=y Le=(7T9); L=y j=12,...,m

Thus, we have:

E=AF+eGE+fu (5.46)
, u=L(L), (5.47)
—o} 0 0 .. 0
Lyz (‘”3—"33) "'(‘)3 to ((D;‘v', —w?) e .fq,m (w?, —_ m,z,,) v
where 1= Y ' . :
0 0 —w e 0 ’
0 0 0 - .——:(n',,, .
G=Bm B':'(T,b“)'

Let us consider two types of nonlinearities in the system (5.46)-(5.47),
characteristic of the investigated class of objects and primarily the
nonlinearity of the servoelements of the space vehicle. Let us set

L(t) =L(p)ty p=io.

We shall consider that the following representation is correct
L (f0)=A (0, %) c0sg (0, do)+iA (v, g) SmEC YD) (5 48y
. w

where A(w, ¢0); ¢ (w, wo) are the desired characteristiés of the nonlinear
control system which depend on two parameters: the frequency w and the
amplitude of the input signal ;.

The nonlinearity of the other type is connected with the processes of
energy dissipation for fuel oscillations in the tank.

Let us assume that Bhe damping coefficients ey depend on the amplitude of
the oscillations 4] corresponding to the generalized coordinates gyt

es=vifi(Go)s J=1,2,..., m, (5.49)
where f(cjo) are some known functions. ’
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Considering (5.49) we find

B G=diag (0, 0, Egljfi(:jo)v"" zgmifl (501))- (5.50)
e

- Then applying the procedure of the Krylov-Bogolyubov method to the equations
(5.46)-(5.47), we obtain the following equations for finding the amplitudes
of the limiting cycles:

—QC‘k'}‘Eé’k/f;(ajo):O- (5.51) -
j=1

Solving the nonlinear equation (5.51) with respect to fg, using the
formulas for the inverse conversion ¢»x we find the required amplitudes of
the limiting cycles for the generalized coordinate z, {, S]y...,5y on a
frequency of wy, which solves the stated problem.

Let us note in conclusion that if we use the geometric interpretation of the -
stabilizability criterion it is possible to note that the possible zone of
oscillations will be contained inside the crosshatched region of the plane

Zy, Zy. Thus, these regions permit interpretation also in the case of the

nonlinear statement of the problem of stability of the closed system made

up of the space vehicle and the automatic angular stabilization system.

Generalizing everything that has been discussed in this book, let us note

the basic conclusion: the investigation of the stabilizability of the space

vehicle is a necessary and effective element of solving the problem of

insuring stability of the space vehicle in the active segment similarly to

how the study of controllability and observability of a system in general

control theory is a necessary step in the solution of various problems of -
optimal control.
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